Cargando…

Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy

An innovative methodology based on non-destructive observation by using harmonic generation microscopy is proposed for detection and location of starch granules and oil in a fried starchy matrix and topography analysis of food products. Specific fluorescent probes were used to label the main biochem...

Descripción completa

Detalles Bibliográficos
Autores principales: Chouët, Agathe, Chevallier, Sylvie, Fleurisson, Romain, Loisel, Catherine, Dubreil, Laurence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540293/
https://www.ncbi.nlm.nih.gov/pubmed/31052170
http://dx.doi.org/10.3390/s19092024
Descripción
Sumario:An innovative methodology based on non-destructive observation by using harmonic generation microscopy is proposed for detection and location of starch granules and oil in a fried starchy matrix and topography analysis of food products. Specific fluorescent probes were used to label the main biochemical components of the starchy fried matrix, namely starch and oil. Fluorescence of starch and oil respectively stained with Safranin O and Nile red was observed from non-linear microscopy. By using sequential scanning and specific emission filters, it was possible to merge fluorescence and harmonic generation signals. Second harmonic generation (SHG) generated by starch granules was superposed with safranin fluorescence, whereas third harmonic generation (THG), not restricted to the superposition with Nile red fluorescent signal, was used to investigate the topography of the fried product. By these experiments, starch granule mapping and topography of the starchy fried product were obtained without any destructive preparation of the sample. This label-free approach using harmonic generation microscopy is a very promising methodology for microstructure investigation of a large panel of starchy food products.