Cargando…

Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis

A performance bound—Cramér-Rao lower bound (CRLB) for target estimation and detection in sparse stepped frequency radars is presented. The vector formulation of this CRLB is used to obtain a lower bound on the estimation error. The estimation performance can be transformed into different types of CR...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Qiushi, Zhang, Xin, Yang, Qiang, Ye, Lei, Zhao, Mengxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540301/
https://www.ncbi.nlm.nih.gov/pubmed/31035639
http://dx.doi.org/10.3390/s19092002
Descripción
Sumario:A performance bound—Cramér-Rao lower bound (CRLB) for target estimation and detection in sparse stepped frequency radars is presented. The vector formulation of this CRLB is used to obtain a lower bound on the estimation error. The estimation performance can be transformed into different types of CRLB structures. Therefore, the expressions of bounds under three equivalent models are derived separately: time delay and Doppler stretch estimator, joint multiple parameter estimator, and sparse-based estimator. The variables to be estimated include the variances of unknown noise, range, velocity, and the real and imaginary parts of the amplitude. A general performance expression is proposed by considering the echo of the target in the line-of-sight. When the relationship between CRLB and various parameters are discussed in detail, the specific effect of waveform parameters on a single CRLB is compared and analyzed. Numerical simulations demonstrated that the resulting CRLB exhibits considerable theoretical and practical significance for the selection of optimal waveform parameters.