Cargando…
Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis
A performance bound—Cramér-Rao lower bound (CRLB) for target estimation and detection in sparse stepped frequency radars is presented. The vector formulation of this CRLB is used to obtain a lower bound on the estimation error. The estimation performance can be transformed into different types of CR...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540301/ https://www.ncbi.nlm.nih.gov/pubmed/31035639 http://dx.doi.org/10.3390/s19092002 |
Sumario: | A performance bound—Cramér-Rao lower bound (CRLB) for target estimation and detection in sparse stepped frequency radars is presented. The vector formulation of this CRLB is used to obtain a lower bound on the estimation error. The estimation performance can be transformed into different types of CRLB structures. Therefore, the expressions of bounds under three equivalent models are derived separately: time delay and Doppler stretch estimator, joint multiple parameter estimator, and sparse-based estimator. The variables to be estimated include the variances of unknown noise, range, velocity, and the real and imaginary parts of the amplitude. A general performance expression is proposed by considering the echo of the target in the line-of-sight. When the relationship between CRLB and various parameters are discussed in detail, the specific effect of waveform parameters on a single CRLB is compared and analyzed. Numerical simulations demonstrated that the resulting CRLB exhibits considerable theoretical and practical significance for the selection of optimal waveform parameters. |
---|