Cargando…
Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats
Deep brain stimulation of the mesencephalic locomotor region (MLR) improves the motor symptoms in Parkinson’s disease and experimental stroke by intervening in the motor cerebral network. Whether high-frequency stimulation (HFS) of the MLR is involved in non-motor processes, such as neuroprotection...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540310/ https://www.ncbi.nlm.nih.gov/pubmed/31083528 http://dx.doi.org/10.3390/ijms20092341 |
_version_ | 1783422586802143232 |
---|---|
author | Schuhmann, Michael K. Stoll, Guido Bohr, Arne Volkmann, Jens Fluri, Felix |
author_facet | Schuhmann, Michael K. Stoll, Guido Bohr, Arne Volkmann, Jens Fluri, Felix |
author_sort | Schuhmann, Michael K. |
collection | PubMed |
description | Deep brain stimulation of the mesencephalic locomotor region (MLR) improves the motor symptoms in Parkinson’s disease and experimental stroke by intervening in the motor cerebral network. Whether high-frequency stimulation (HFS) of the MLR is involved in non-motor processes, such as neuroprotection and inflammation in the area surrounding the photothrombotic lesion, has not been elucidated. This study evaluates whether MLR-HFS exerts an anti-apoptotic and anti-inflammatory effect on the border zone of cerebral photothrombotic stroke. Rats underwent photothrombotic stroke of the right sensorimotor cortex and the implantation of a microelectrode into the ipsilesional MLR. After intervention, either HFS or sham stimulation of the MLR was applied for 24 h. The infarct volumes were calculated from consecutive brain sections. Neuronal apoptosis was analyzed by TUNEL staining. Flow cytometry and immunohistochemistry determined the perilesional inflammatory response. Neuronal apoptosis was significantly reduced in the ischemic penumbra after MLR-HFS, whereas the infarct volumes did not differ between the groups. MLR-HFS significantly reduced the release of cytokines and chemokines within the ischemic penumbra. MLR-HFS is neuroprotective and it reduces pro-inflammatory mediators in the area that surrounds the photothrombotic stroke without changing the number of immune cells, which indicates that MLR-HFS enables the function of inflammatory cells to be altered on a molecular level. |
format | Online Article Text |
id | pubmed-6540310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65403102019-06-04 Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats Schuhmann, Michael K. Stoll, Guido Bohr, Arne Volkmann, Jens Fluri, Felix Int J Mol Sci Article Deep brain stimulation of the mesencephalic locomotor region (MLR) improves the motor symptoms in Parkinson’s disease and experimental stroke by intervening in the motor cerebral network. Whether high-frequency stimulation (HFS) of the MLR is involved in non-motor processes, such as neuroprotection and inflammation in the area surrounding the photothrombotic lesion, has not been elucidated. This study evaluates whether MLR-HFS exerts an anti-apoptotic and anti-inflammatory effect on the border zone of cerebral photothrombotic stroke. Rats underwent photothrombotic stroke of the right sensorimotor cortex and the implantation of a microelectrode into the ipsilesional MLR. After intervention, either HFS or sham stimulation of the MLR was applied for 24 h. The infarct volumes were calculated from consecutive brain sections. Neuronal apoptosis was analyzed by TUNEL staining. Flow cytometry and immunohistochemistry determined the perilesional inflammatory response. Neuronal apoptosis was significantly reduced in the ischemic penumbra after MLR-HFS, whereas the infarct volumes did not differ between the groups. MLR-HFS significantly reduced the release of cytokines and chemokines within the ischemic penumbra. MLR-HFS is neuroprotective and it reduces pro-inflammatory mediators in the area that surrounds the photothrombotic stroke without changing the number of immune cells, which indicates that MLR-HFS enables the function of inflammatory cells to be altered on a molecular level. MDPI 2019-05-11 /pmc/articles/PMC6540310/ /pubmed/31083528 http://dx.doi.org/10.3390/ijms20092341 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schuhmann, Michael K. Stoll, Guido Bohr, Arne Volkmann, Jens Fluri, Felix Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats |
title | Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats |
title_full | Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats |
title_fullStr | Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats |
title_full_unstemmed | Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats |
title_short | Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats |
title_sort | electrical stimulation of the mesencephalic locomotor region attenuates neuronal loss and cytokine expression in the perifocal region of photothrombotic stroke in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540310/ https://www.ncbi.nlm.nih.gov/pubmed/31083528 http://dx.doi.org/10.3390/ijms20092341 |
work_keys_str_mv | AT schuhmannmichaelk electricalstimulationofthemesencephaliclocomotorregionattenuatesneuronallossandcytokineexpressionintheperifocalregionofphotothromboticstrokeinrats AT stollguido electricalstimulationofthemesencephaliclocomotorregionattenuatesneuronallossandcytokineexpressionintheperifocalregionofphotothromboticstrokeinrats AT bohrarne electricalstimulationofthemesencephaliclocomotorregionattenuatesneuronallossandcytokineexpressionintheperifocalregionofphotothromboticstrokeinrats AT volkmannjens electricalstimulationofthemesencephaliclocomotorregionattenuatesneuronallossandcytokineexpressionintheperifocalregionofphotothromboticstrokeinrats AT flurifelix electricalstimulationofthemesencephaliclocomotorregionattenuatesneuronallossandcytokineexpressionintheperifocalregionofphotothromboticstrokeinrats |