Cargando…
HBV upregulates AP-1 complex subunit mu-1 expression via the JNK pathway to promote proliferation of liver cancer cells
Although hepatitis B virus (HBV) infection is responsible for liver cancer, the exact mechanism of its action remains unclear. μ1 adaptin is an intrinsic part of the clathrin adaptor AP-1 complex. In addition to its canonical biological function that involves cargo sorting and vesicular transport, r...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540315/ https://www.ncbi.nlm.nih.gov/pubmed/31289517 http://dx.doi.org/10.3892/ol.2019.10291 |
Sumario: | Although hepatitis B virus (HBV) infection is responsible for liver cancer, the exact mechanism of its action remains unclear. μ1 adaptin is an intrinsic part of the clathrin adaptor AP-1 complex. In addition to its canonical biological function that involves cargo sorting and vesicular transport, recent studies have demonstrated that μ1 adaptin participates in cell growth and proliferation. The aim of the present study was to investigate the effects of the clathrin adaptor AP-1 complex subunit mu-1 (AP1M1) on liver cancer cell proliferation. The present study reports for the first time that AP1M1 is upregulated in the HBV-transfected HepG2.215 liver cancer cells. Silencing of AP1M1 in HepG2.215 cells suppressed their proliferation, while the overexpression of AP1M1 in HepG2 cells promoted cell proliferation. The data suggested that AP1M1 is one of the crucial factors involved in the progression of liver cancer caused by HBV infection. In addition, it was demonstrated that HBV facilitated AP1M1 expression in a JNK-dependent manner. The increased expression levels of AP1M1 enhanced phosphorylation of protein kinase B and accelerated cell proliferation. Unraveling the effects of AP1M1 on liver cancer cell proliferation and the mechanism of AP1M1 transcriptional regulation may provide new therapeutic targets for HBV-positive liver cancer. |
---|