Cargando…
Statistical Approaches Based on Deep Learning Regression for Verification of Normality of Blood Pressure Estimates
Oscillometric blood pressure (BP) monitors currently estimate a single point but do not identify variations in response to physiological characteristics. In this paper, to analyze BP’s normality based on oscillometric measurements, we use statistical approaches including kurtosis, skewness, Kolmogor...
Autores principales: | Lee, Soojeong, Lee, Gangseong, Jeon, Gwanggil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540460/ https://www.ncbi.nlm.nih.gov/pubmed/31072052 http://dx.doi.org/10.3390/s19092137 |
Ejemplares similares
-
On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation
por: Lee, Soojeong, et al.
Publicado: (2013) -
Two-Step Pseudomaximum Amplitude-Based Confidence Interval Estimation for Oscillometric Blood Pressure Measurements
por: Lee, Soojeong, et al.
Publicado: (2015) -
Combining Gaussian Process with Hybrid Optimal Feature Decision in Cuffless Blood Pressure Estimation
por: Lee, Soojeong, et al.
Publicado: (2023) -
Uncertainty in Blood Pressure Measurement Estimated Using Ensemble-Based Recursive Methodology
por: Lee, Soojeong, et al.
Publicado: (2020) -
Dual-Sensor Signals Based Exact Gaussian Process-Assisted Hybrid Feature Extraction and Weighted Feature Fusion for Respiratory Rate and Uncertainty Estimations
por: Lee, Soojeong, et al.
Publicado: (2022)