Cargando…
Antimicrobial resistance trends in bloodstream infections at a large teaching hospital in China: a 20-year surveillance study (1998-2017)
BACKGROUND: Bacterial bloodstream infections (BSIs) cause high morbidity and mortality worldwide in humans, but the pathogenic spectrum varies from region to region. Long-term monitoring of the pathogenic spectrum and changes in bacterial antibiotic resistance is hugely important for effective clini...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540536/ https://www.ncbi.nlm.nih.gov/pubmed/31161033 http://dx.doi.org/10.1186/s13756-019-0545-z |
Sumario: | BACKGROUND: Bacterial bloodstream infections (BSIs) cause high morbidity and mortality worldwide in humans, but the pathogenic spectrum varies from region to region. Long-term monitoring of the pathogenic spectrum and changes in bacterial antibiotic resistance is hugely important for effective clinical therapy and infection control. This study examined the data for BSIs in Tongji Hospital, one of the largest teaching hospitals in China, in an attempt to gain better understanding of bacterial antibiotic resistance in China, focusing on central China. METHODS: Data from Tongji Hospital for a 20-year period (1998–2017) were used for a retrospective analysis to understand the pathogenic spectrum of BSIs and the changes occurring in antimicrobial resistance in central China. The disk diffusion and E test methods were used for antimicrobial susceptibility testing according to Clinical & Laboratory Standards Institute methodologies, and the data were analyzed by WHONET 5.6 software. RESULTS: The isolated pathogens mainly came from hospitalized patients not treated in intensive care units (ICUs), and accounted for 81.5% of the total (9130/11200). The most common Gram-negative and Gram-positive bacterial BSI-causing pathogens were Escherichia coli and Staphylococcus aureus, respectively. The detection rate for methicillin-resistant S. aureus (MRSA) in the hospitalized non-ICU patients increased from 8.4% in 1998–2002 to 63% in 2013–2017, while the detection rate for carbapenem-resistant (CR) Klebsiella pneumoniae was below 5% in 1998–2012 but increased to 34.9% in 2013–2017. In contrast, worryingly, the detection rate for CR K. pneumoniae in ICU patients increased from 0% in 2013 to 75% in 2016. E. coli displayed the highest sensitivity rates to imipenem, meropenem and amikacin, all of which were > 90%, followed by cefoxitin at > 80%, and cefoperazone/sulbactam at > 70%. K. pneumoniae isolates were most sensitive to imipenem, meropenem and amikacin antibiotics, with sensitivity rates exceeding 60%. S. aureus isolates were most sensitive to vancomycin, teicoplanin and trimethoprim/sulfamethoxazole, with sensitivity rates exceeding 90%. CONCLUSIONS: BSIs caused by CR K. pneumoniae clearly posed a severe challenge to infection control and treatment of ICU and non-ICU patients in this retrospective study, while MRSA was an issue for non-ICU patients. |
---|