Cargando…
Associating somatic mutations to clinical outcomes: a pan-cancer study of survival time
We developed subclone multiplicity allocation and somatic heterogeneity (SMASH), a new statistical method for intra-tumor heterogeneity (ITH) inference. SMASH is tailored to the purpose of large-scale association studies with one tumor sample per patient. In a pan-cancer study of 14 cancer types, we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540540/ https://www.ncbi.nlm.nih.gov/pubmed/31138328 http://dx.doi.org/10.1186/s13073-019-0643-9 |
Sumario: | We developed subclone multiplicity allocation and somatic heterogeneity (SMASH), a new statistical method for intra-tumor heterogeneity (ITH) inference. SMASH is tailored to the purpose of large-scale association studies with one tumor sample per patient. In a pan-cancer study of 14 cancer types, we studied the associations between survival time and ITH quantified by SMASH, together with other features of somatic mutations. Our results show that ITH is associated with survival time in several cancer types and its effect can be modified by other covariates, such as mutation burden. SMASH is available at https://github.com/Sun-lab/SMASH. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-019-0643-9) contains supplementary material, which is available to authorized users. |
---|