Cargando…

Conditionally unbiased estimation in the normal setting with unknown variances

To efficiently and completely correct for selection bias in adaptive two-stage trials, uniformly minimum variance conditionally unbiased estimators (UMVCUEs) have been derived for trial designs with normally distributed data. However, a common assumption is that the variances are known exactly, whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Robertson, David S., Glimm, Ekkehard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540744/
https://www.ncbi.nlm.nih.gov/pubmed/31217751
http://dx.doi.org/10.1080/03610926.2017.1417429
Descripción
Sumario:To efficiently and completely correct for selection bias in adaptive two-stage trials, uniformly minimum variance conditionally unbiased estimators (UMVCUEs) have been derived for trial designs with normally distributed data. However, a common assumption is that the variances are known exactly, which is unlikely to be the case in practice. We extend the work of Cohen and Sackrowitz (Statistics & Probability Letters, 8(3):273-278, 1989), who proposed an UMVCUE for the best performing candidate in the normal setting with a common unknown variance. Our extension allows for multiple selected candidates, as well as unequal stage one and two sample sizes.