Cargando…
Conditionally unbiased estimation in the normal setting with unknown variances
To efficiently and completely correct for selection bias in adaptive two-stage trials, uniformly minimum variance conditionally unbiased estimators (UMVCUEs) have been derived for trial designs with normally distributed data. However, a common assumption is that the variances are known exactly, whic...
Autores principales: | Robertson, David S., Glimm, Ekkehard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540744/ https://www.ncbi.nlm.nih.gov/pubmed/31217751 http://dx.doi.org/10.1080/03610926.2017.1417429 |
Ejemplares similares
-
Conditionally unbiased and near unbiased estimation of the selected treatment mean for multistage drop-the-losers trials
por: Bowden, Jack, et al.
Publicado: (2014) -
Optimal unbiased estimation of variance components
por: Malley, James D
Publicado: (1986) -
Unbiased weighted variance and skewness estimators for overlapping returns
por: Taylor, Stephen, et al.
Publicado: (2018) -
The unbiased estimation of the fraction of variance explained by a model
por: Pospisil, Dean A., et al.
Publicado: (2021) -
Unbiased estimation in seamless phase II/III trials with unequal treatment effect variances and hypothesis‐driven selection rules
por: Robertson, David S., et al.
Publicado: (2016)