Cargando…

Siamese neem flower extract suppresses cholesterol absorption by interfering NPC1L1 and micellar property in vitro and in intestinal Caco-2 cells

Siamese neem (Azadirachta indica A. Juss var. siamensis Valeton) (A. indica) leaf extract, a traditional ayurvedic medicine, has been reported to exhibit antipyretic, antibacterial, antidyslipidemic, and antihyperglycemia effects. This study investigated the mechanism of hypocholesterolemic effect o...

Descripción completa

Detalles Bibliográficos
Autores principales: Duangjai, Acharaporn, Ontawong, Atcharaporn, Srimaroeng, Chutima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540922/
https://www.ncbi.nlm.nih.gov/pubmed/31160896
http://dx.doi.org/10.4103/1735-5362.258485
Descripción
Sumario:Siamese neem (Azadirachta indica A. Juss var. siamensis Valeton) (A. indica) leaf extract, a traditional ayurvedic medicine, has been reported to exhibit antipyretic, antibacterial, antidyslipidemic, and antihyperglycemia effects. This study investigated the mechanism of hypocholesterolemic effect of methanolic extract of Siamese neem flowers in in vitro studies and in Caco-2 cells. Pancreatic cholesterol esterase and 3-hydroxy 3-methylglutaryl-CoA (HMG-CoA) reductase activities were assessed. Cholesterol micelle formation was prepared for in vitro cholesterol physicochemical property analyses, micelle size and solubility, and transport of cholesterol into the Caco-2 cells. The expression of niemann-pick C1 like 1 (NPC1L1), and its major regulator, peroxisome proliferator-activated receptor δ (PPARδ), were determined by western blot and real time polymerase chain reaction, respectively. A. indica flower extract inhibited pancreatic cholesterol esterase activity and increased cholesterol micelles size. Uptake of cholesterol into Caco-2 cells was inhibited by A. indica flower extract in a dose-dependent manner. In addition, A. indica extract inhibited HMG-CoA reductase activity, resulting in low level of intracellular cholesterol accumulation, together with increased cytosolic NPC1L1 protein expression and decreased PPARδ gene expression. In conclusion, A. indica flower extract has cholesterol-lowering effects by inhibiting intestinal cholesterol absorption, interfering micellar cholesterol formation, and attenuating cholesterol synthesis. As such, A. indica flower extract has potential for developing into nutraceutical product for prevention of hypocholesterolemia.