Cargando…
Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains
Inorganic–organic hybrid semiconductors are promising candidates for energy-related applications. Here, we have developed a unique class of multiple-stranded one-dimensional (1D) structures as very robust and efficient lighting phosphors. Following a systematic ligand design strategy, these structur...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540957/ https://www.ncbi.nlm.nih.gov/pubmed/31191894 http://dx.doi.org/10.1039/c9sc00970a |
_version_ | 1783422711048962048 |
---|---|
author | Fang, Yang Sojdak, Christopher A. Dey, Gangotri Teat, Simon J. Li, Mingxing Cotlet, Mircea Zhu, Kun Liu, Wei Wang, Lu ÓCarroll, Deirdre M. Li, Jing |
author_facet | Fang, Yang Sojdak, Christopher A. Dey, Gangotri Teat, Simon J. Li, Mingxing Cotlet, Mircea Zhu, Kun Liu, Wei Wang, Lu ÓCarroll, Deirdre M. Li, Jing |
author_sort | Fang, Yang |
collection | PubMed |
description | Inorganic–organic hybrid semiconductors are promising candidates for energy-related applications. Here, we have developed a unique class of multiple-stranded one-dimensional (1D) structures as very robust and efficient lighting phosphors. Following a systematic ligand design strategy, these structures are constructed by forming multiple coordination bonds between adjacent copper iodide inorganic building units Cu(m)I(m) (m = 2, 4, 6) (e.g. dimer, tetramer and hexamer clusters) and strong-binding bidentate organic ligands with low LUMO energies which give rise to infinite 1D chains of high stability and low bandgaps. The significantly enhanced thermal/photostability of these multiple-stranded chain structures is largely attributed to the multi-dentate nature and enhanced Cu–N bonding, and their excellent blue excitability is a result of using benzotriazole based ligands with low-lying LUMO energies. These facts are confirmed by Density Functional Theory (DFT) calculations. The luminescence mechanism of these compounds is studied by temperature dependent photoluminescence experiments. High internal quantum yields (IQYs) are achieved under blue excitation, marking the highest value reported so far for crystalline inorganic–organic hybrid yellow phosphors. Excellent thermal- and photo-stability, coupled with high luminescence efficiency, make this class of materials promising candidates for use as rare-earth element (REE) free phosphors in energy efficient general lighting devices. |
format | Online Article Text |
id | pubmed-6540957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-65409572019-06-12 Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains Fang, Yang Sojdak, Christopher A. Dey, Gangotri Teat, Simon J. Li, Mingxing Cotlet, Mircea Zhu, Kun Liu, Wei Wang, Lu ÓCarroll, Deirdre M. Li, Jing Chem Sci Chemistry Inorganic–organic hybrid semiconductors are promising candidates for energy-related applications. Here, we have developed a unique class of multiple-stranded one-dimensional (1D) structures as very robust and efficient lighting phosphors. Following a systematic ligand design strategy, these structures are constructed by forming multiple coordination bonds between adjacent copper iodide inorganic building units Cu(m)I(m) (m = 2, 4, 6) (e.g. dimer, tetramer and hexamer clusters) and strong-binding bidentate organic ligands with low LUMO energies which give rise to infinite 1D chains of high stability and low bandgaps. The significantly enhanced thermal/photostability of these multiple-stranded chain structures is largely attributed to the multi-dentate nature and enhanced Cu–N bonding, and their excellent blue excitability is a result of using benzotriazole based ligands with low-lying LUMO energies. These facts are confirmed by Density Functional Theory (DFT) calculations. The luminescence mechanism of these compounds is studied by temperature dependent photoluminescence experiments. High internal quantum yields (IQYs) are achieved under blue excitation, marking the highest value reported so far for crystalline inorganic–organic hybrid yellow phosphors. Excellent thermal- and photo-stability, coupled with high luminescence efficiency, make this class of materials promising candidates for use as rare-earth element (REE) free phosphors in energy efficient general lighting devices. Royal Society of Chemistry 2019-04-17 /pmc/articles/PMC6540957/ /pubmed/31191894 http://dx.doi.org/10.1039/c9sc00970a Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Fang, Yang Sojdak, Christopher A. Dey, Gangotri Teat, Simon J. Li, Mingxing Cotlet, Mircea Zhu, Kun Liu, Wei Wang, Lu ÓCarroll, Deirdre M. Li, Jing Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains |
title | Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains
|
title_full | Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains
|
title_fullStr | Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains
|
title_full_unstemmed | Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains
|
title_short | Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains
|
title_sort | highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540957/ https://www.ncbi.nlm.nih.gov/pubmed/31191894 http://dx.doi.org/10.1039/c9sc00970a |
work_keys_str_mv | AT fangyang highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT sojdakchristophera highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT deygangotri highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT teatsimonj highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT limingxing highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT cotletmircea highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT zhukun highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT liuwei highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT wanglu highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT ocarrolldeirdrem highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains AT lijing highlyefficientandveryrobustblueexcitableyellowphosphorsbuiltonmultiplestrandedonedimensionalinorganicorganichybridchains |