Cargando…
Distillation of crop models to learn plant physiology theories using machine learning
Convolutional neural networks (CNNs) can not only classify images but can also generate key features, e.g., the Google neural network that learned to identify cats by simply watching YouTube videos, for the classification. In this paper, crop models are distilled by CNN to evaluate the ability of de...
Autor principal: | Yamamoto, Kyosuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541271/ https://www.ncbi.nlm.nih.gov/pubmed/31141528 http://dx.doi.org/10.1371/journal.pone.0217075 |
Ejemplares similares
-
On Plant Detection of Intact Tomato Fruits Using Image Analysis and Machine Learning Methods
por: Yamamoto, Kyosuke, et al.
Publicado: (2014) -
Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination
por: Berghian-Grosan, Camelia, et al.
Publicado: (2020) -
Optimization of Pesticides Spray on Crops in Agriculture using Machine Learning
por: Indu,, et al.
Publicado: (2022) -
Survey on crop pest detection using deep learning and machine learning approaches
por: Chithambarathanu, M., et al.
Publicado: (2023) -
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
por: Ge, Jiankun, et al.
Publicado: (2022)