Cargando…

Precious metal-free molecular machines for solar thermal energy storage

Four benzothiazolium crown ether-containing styryl dyes were prepared through an optimized synthetic procedure. Two of the dyes (4b and 4d) having substituents in the 5-position of the benzothiazole ring are newly synthesized compounds. They demonstrated a higher degree of trans–cis photoisomerizati...

Descripción completa

Detalles Bibliográficos
Autores principales: Kandinska, Meglena I, Kitova, Snejana M, Videva, Vladimira S, Stoyanov, Stanimir S, Yordanova, Stanislava B, Baluschev, Stanislav B, Angelova, Silvia E, Vasilev, Aleksey A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541326/
https://www.ncbi.nlm.nih.gov/pubmed/31164946
http://dx.doi.org/10.3762/bjoc.15.106
Descripción
Sumario:Four benzothiazolium crown ether-containing styryl dyes were prepared through an optimized synthetic procedure. Two of the dyes (4b and 4d) having substituents in the 5-position of the benzothiazole ring are newly synthesized compounds. They demonstrated a higher degree of trans–cis photoisomerization and a longer life time of the higher energy forms in comparison with the known analogs. The chemical structures of all dyes in the series were characterized by NMR, UV–vis, IR spectroscopy and elemental analysis. The steady-state photophysical properties of the dyes were elucidated. The stability constants of metal complexes were determined and are in good agreement with the literature data for reference dyes. The temporal evolution of trans-to-cis isomerization was observed in a real-time regime. The dyes demonstrated a low intrinsic fluorescence of their Ba(2+) complexes and high yield of E/Z photoisomerization with lifetimes of the higher energy form longer than 500 seconds. Density functional theory (DFT) calculations at the B3LYP/6-31+G(d,p) level were performed in order to predict the enthalpies (H) of the cis and trans isomers and the storage energies (ΔH) for the systems studied.