Cargando…
Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541463/ https://www.ncbi.nlm.nih.gov/pubmed/31149638 http://dx.doi.org/10.1126/sciadv.aaw4466 |
_version_ | 1783422777844301824 |
---|---|
author | Zhou, Sitong Giannetto, Michael DeCourcey, James Kang, Hongyi Kang, Ning Li, Yizeng Zheng, Suilan Zhao, Hetince Simmons, William R. Wei, Helen S. Bodine, David M. Low, Philip S. Nedergaard, Maiken Wan, Jiandi |
author_facet | Zhou, Sitong Giannetto, Michael DeCourcey, James Kang, Hongyi Kang, Ning Li, Yizeng Zheng, Suilan Zhao, Hetince Simmons, William R. Wei, Helen S. Bodine, David M. Low, Philip S. Nedergaard, Maiken Wan, Jiandi |
author_sort | Zhou, Sitong |
collection | PubMed |
description | The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO(2)) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO(2) and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO(2) changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia. |
format | Online Article Text |
id | pubmed-6541463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65414632019-05-30 Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia Zhou, Sitong Giannetto, Michael DeCourcey, James Kang, Hongyi Kang, Ning Li, Yizeng Zheng, Suilan Zhao, Hetince Simmons, William R. Wei, Helen S. Bodine, David M. Low, Philip S. Nedergaard, Maiken Wan, Jiandi Sci Adv Research Articles The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO(2)) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO(2) and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO(2) changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia. American Association for the Advancement of Science 2019-05-29 /pmc/articles/PMC6541463/ /pubmed/31149638 http://dx.doi.org/10.1126/sciadv.aaw4466 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zhou, Sitong Giannetto, Michael DeCourcey, James Kang, Hongyi Kang, Ning Li, Yizeng Zheng, Suilan Zhao, Hetince Simmons, William R. Wei, Helen S. Bodine, David M. Low, Philip S. Nedergaard, Maiken Wan, Jiandi Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
title | Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
title_full | Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
title_fullStr | Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
title_full_unstemmed | Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
title_short | Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
title_sort | oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541463/ https://www.ncbi.nlm.nih.gov/pubmed/31149638 http://dx.doi.org/10.1126/sciadv.aaw4466 |
work_keys_str_mv | AT zhousitong oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT giannettomichael oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT decourceyjames oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT kanghongyi oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT kangning oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT liyizeng oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT zhengsuilan oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT zhaohetince oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT simmonswilliamr oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT weihelens oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT bodinedavidm oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT lowphilips oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT nedergaardmaiken oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia AT wanjiandi oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia |