Cargando…

Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia

The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Sitong, Giannetto, Michael, DeCourcey, James, Kang, Hongyi, Kang, Ning, Li, Yizeng, Zheng, Suilan, Zhao, Hetince, Simmons, William R., Wei, Helen S., Bodine, David M., Low, Philip S., Nedergaard, Maiken, Wan, Jiandi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541463/
https://www.ncbi.nlm.nih.gov/pubmed/31149638
http://dx.doi.org/10.1126/sciadv.aaw4466
_version_ 1783422777844301824
author Zhou, Sitong
Giannetto, Michael
DeCourcey, James
Kang, Hongyi
Kang, Ning
Li, Yizeng
Zheng, Suilan
Zhao, Hetince
Simmons, William R.
Wei, Helen S.
Bodine, David M.
Low, Philip S.
Nedergaard, Maiken
Wan, Jiandi
author_facet Zhou, Sitong
Giannetto, Michael
DeCourcey, James
Kang, Hongyi
Kang, Ning
Li, Yizeng
Zheng, Suilan
Zhao, Hetince
Simmons, William R.
Wei, Helen S.
Bodine, David M.
Low, Philip S.
Nedergaard, Maiken
Wan, Jiandi
author_sort Zhou, Sitong
collection PubMed
description The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO(2)) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO(2) and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO(2) changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia.
format Online
Article
Text
id pubmed-6541463
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-65414632019-05-30 Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia Zhou, Sitong Giannetto, Michael DeCourcey, James Kang, Hongyi Kang, Ning Li, Yizeng Zheng, Suilan Zhao, Hetince Simmons, William R. Wei, Helen S. Bodine, David M. Low, Philip S. Nedergaard, Maiken Wan, Jiandi Sci Adv Research Articles The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO(2)) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO(2) and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO(2) changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia. American Association for the Advancement of Science 2019-05-29 /pmc/articles/PMC6541463/ /pubmed/31149638 http://dx.doi.org/10.1126/sciadv.aaw4466 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Zhou, Sitong
Giannetto, Michael
DeCourcey, James
Kang, Hongyi
Kang, Ning
Li, Yizeng
Zheng, Suilan
Zhao, Hetince
Simmons, William R.
Wei, Helen S.
Bodine, David M.
Low, Philip S.
Nedergaard, Maiken
Wan, Jiandi
Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
title Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
title_full Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
title_fullStr Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
title_full_unstemmed Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
title_short Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
title_sort oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541463/
https://www.ncbi.nlm.nih.gov/pubmed/31149638
http://dx.doi.org/10.1126/sciadv.aaw4466
work_keys_str_mv AT zhousitong oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT giannettomichael oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT decourceyjames oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT kanghongyi oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT kangning oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT liyizeng oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT zhengsuilan oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT zhaohetince oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT simmonswilliamr oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT weihelens oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT bodinedavidm oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT lowphilips oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT nedergaardmaiken oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia
AT wanjiandi oxygentensionmediatederythrocytemembraneinteractionsregulatecerebralcapillaryhyperemia