Cargando…

A single layer spin-orbit torque nano-oscillator

Spin torque and spin Hall effect nano-oscillators generate high intensity spin wave auto-oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices require externally generated spin currents either fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Haidar, Mohammad, Awad, Ahmad A., Dvornik, Mykola, Khymyn, Roman, Houshang, Afshin, Åkerman, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541614/
https://www.ncbi.nlm.nih.gov/pubmed/31142758
http://dx.doi.org/10.1038/s41467-019-10120-4
_version_ 1783422795553701888
author Haidar, Mohammad
Awad, Ahmad A.
Dvornik, Mykola
Khymyn, Roman
Houshang, Afshin
Åkerman, Johan
author_facet Haidar, Mohammad
Awad, Ahmad A.
Dvornik, Mykola
Khymyn, Roman
Houshang, Afshin
Åkerman, Johan
author_sort Haidar, Mohammad
collection PubMed
description Spin torque and spin Hall effect nano-oscillators generate high intensity spin wave auto-oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices require externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nano-constrictions in single 15–20 nm thick permalloy layers with oxide interfaces. Using a combination of spin torque ferromagnetic resonance measurements, scanning micro-Brillouin light scattering microscopy, and micromagnetic simulations, we identify the auto-oscillations as emanating from a localized edge mode of the nano-constriction driven by spin-orbit torques. Our results pave the way for greatly simplified designs of auto-oscillating nano-magnetic systems only requiring single ferromagnetic layers with oxide interfaces.
format Online
Article
Text
id pubmed-6541614
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65416142019-05-31 A single layer spin-orbit torque nano-oscillator Haidar, Mohammad Awad, Ahmad A. Dvornik, Mykola Khymyn, Roman Houshang, Afshin Åkerman, Johan Nat Commun Article Spin torque and spin Hall effect nano-oscillators generate high intensity spin wave auto-oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices require externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nano-constrictions in single 15–20 nm thick permalloy layers with oxide interfaces. Using a combination of spin torque ferromagnetic resonance measurements, scanning micro-Brillouin light scattering microscopy, and micromagnetic simulations, we identify the auto-oscillations as emanating from a localized edge mode of the nano-constriction driven by spin-orbit torques. Our results pave the way for greatly simplified designs of auto-oscillating nano-magnetic systems only requiring single ferromagnetic layers with oxide interfaces. Nature Publishing Group UK 2019-05-29 /pmc/articles/PMC6541614/ /pubmed/31142758 http://dx.doi.org/10.1038/s41467-019-10120-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Haidar, Mohammad
Awad, Ahmad A.
Dvornik, Mykola
Khymyn, Roman
Houshang, Afshin
Åkerman, Johan
A single layer spin-orbit torque nano-oscillator
title A single layer spin-orbit torque nano-oscillator
title_full A single layer spin-orbit torque nano-oscillator
title_fullStr A single layer spin-orbit torque nano-oscillator
title_full_unstemmed A single layer spin-orbit torque nano-oscillator
title_short A single layer spin-orbit torque nano-oscillator
title_sort single layer spin-orbit torque nano-oscillator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541614/
https://www.ncbi.nlm.nih.gov/pubmed/31142758
http://dx.doi.org/10.1038/s41467-019-10120-4
work_keys_str_mv AT haidarmohammad asinglelayerspinorbittorquenanooscillator
AT awadahmada asinglelayerspinorbittorquenanooscillator
AT dvornikmykola asinglelayerspinorbittorquenanooscillator
AT khymynroman asinglelayerspinorbittorquenanooscillator
AT houshangafshin asinglelayerspinorbittorquenanooscillator
AT akermanjohan asinglelayerspinorbittorquenanooscillator
AT haidarmohammad singlelayerspinorbittorquenanooscillator
AT awadahmada singlelayerspinorbittorquenanooscillator
AT dvornikmykola singlelayerspinorbittorquenanooscillator
AT khymynroman singlelayerspinorbittorquenanooscillator
AT houshangafshin singlelayerspinorbittorquenanooscillator
AT akermanjohan singlelayerspinorbittorquenanooscillator