Cargando…
Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neu...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541875/ https://www.ncbi.nlm.nih.gov/pubmed/31118204 http://dx.doi.org/10.1523/ENEURO.0427-18.2019 |
_version_ | 1783422830429339648 |
---|---|
author | Sou, Yu-shin Kakuta, Soichiro Kamikubo, Yuji Niisato, Kazue Sakurai, Takashi Parajuli, Laxmi Kumar Tanida, Isei Saito, Hiromitsu Suzuki, Noboru Sakimura, Kenji Maeda, Yusuke Kinoshita, Taroh Uchiyama, Yasuo Koike, Masato |
author_facet | Sou, Yu-shin Kakuta, Soichiro Kamikubo, Yuji Niisato, Kazue Sakurai, Takashi Parajuli, Laxmi Kumar Tanida, Isei Saito, Hiromitsu Suzuki, Noboru Sakimura, Kenji Maeda, Yusuke Kinoshita, Taroh Uchiyama, Yasuo Koike, Masato |
author_sort | Sou, Yu-shin |
collection | PubMed |
description | The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry. |
format | Online Article Text |
id | pubmed-6541875 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-65418752019-05-30 Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice Sou, Yu-shin Kakuta, Soichiro Kamikubo, Yuji Niisato, Kazue Sakurai, Takashi Parajuli, Laxmi Kumar Tanida, Isei Saito, Hiromitsu Suzuki, Noboru Sakimura, Kenji Maeda, Yusuke Kinoshita, Taroh Uchiyama, Yasuo Koike, Masato eNeuro New Research The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry. Society for Neuroscience 2019-05-29 /pmc/articles/PMC6541875/ /pubmed/31118204 http://dx.doi.org/10.1523/ENEURO.0427-18.2019 Text en Copyright © 2019 Sou et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Sou, Yu-shin Kakuta, Soichiro Kamikubo, Yuji Niisato, Kazue Sakurai, Takashi Parajuli, Laxmi Kumar Tanida, Isei Saito, Hiromitsu Suzuki, Noboru Sakimura, Kenji Maeda, Yusuke Kinoshita, Taroh Uchiyama, Yasuo Koike, Masato Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice |
title | Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice |
title_full | Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice |
title_fullStr | Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice |
title_full_unstemmed | Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice |
title_short | Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice |
title_sort | cerebellar neurodegeneration and neuronal circuit remodeling in golgi ph regulator-deficient mice |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541875/ https://www.ncbi.nlm.nih.gov/pubmed/31118204 http://dx.doi.org/10.1523/ENEURO.0427-18.2019 |
work_keys_str_mv | AT souyushin cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT kakutasoichiro cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT kamikuboyuji cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT niisatokazue cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT sakuraitakashi cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT parajulilaxmikumar cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT tanidaisei cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT saitohiromitsu cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT suzukinoboru cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT sakimurakenji cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT maedayusuke cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT kinoshitataroh cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT uchiyamayasuo cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice AT koikemasato cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice |