Cargando…

Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice

The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sou, Yu-shin, Kakuta, Soichiro, Kamikubo, Yuji, Niisato, Kazue, Sakurai, Takashi, Parajuli, Laxmi Kumar, Tanida, Isei, Saito, Hiromitsu, Suzuki, Noboru, Sakimura, Kenji, Maeda, Yusuke, Kinoshita, Taroh, Uchiyama, Yasuo, Koike, Masato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541875/
https://www.ncbi.nlm.nih.gov/pubmed/31118204
http://dx.doi.org/10.1523/ENEURO.0427-18.2019
_version_ 1783422830429339648
author Sou, Yu-shin
Kakuta, Soichiro
Kamikubo, Yuji
Niisato, Kazue
Sakurai, Takashi
Parajuli, Laxmi Kumar
Tanida, Isei
Saito, Hiromitsu
Suzuki, Noboru
Sakimura, Kenji
Maeda, Yusuke
Kinoshita, Taroh
Uchiyama, Yasuo
Koike, Masato
author_facet Sou, Yu-shin
Kakuta, Soichiro
Kamikubo, Yuji
Niisato, Kazue
Sakurai, Takashi
Parajuli, Laxmi Kumar
Tanida, Isei
Saito, Hiromitsu
Suzuki, Noboru
Sakimura, Kenji
Maeda, Yusuke
Kinoshita, Taroh
Uchiyama, Yasuo
Koike, Masato
author_sort Sou, Yu-shin
collection PubMed
description The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry.
format Online
Article
Text
id pubmed-6541875
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-65418752019-05-30 Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice Sou, Yu-shin Kakuta, Soichiro Kamikubo, Yuji Niisato, Kazue Sakurai, Takashi Parajuli, Laxmi Kumar Tanida, Isei Saito, Hiromitsu Suzuki, Noboru Sakimura, Kenji Maeda, Yusuke Kinoshita, Taroh Uchiyama, Yasuo Koike, Masato eNeuro New Research The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry. Society for Neuroscience 2019-05-29 /pmc/articles/PMC6541875/ /pubmed/31118204 http://dx.doi.org/10.1523/ENEURO.0427-18.2019 Text en Copyright © 2019 Sou et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle New Research
Sou, Yu-shin
Kakuta, Soichiro
Kamikubo, Yuji
Niisato, Kazue
Sakurai, Takashi
Parajuli, Laxmi Kumar
Tanida, Isei
Saito, Hiromitsu
Suzuki, Noboru
Sakimura, Kenji
Maeda, Yusuke
Kinoshita, Taroh
Uchiyama, Yasuo
Koike, Masato
Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
title Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
title_full Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
title_fullStr Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
title_full_unstemmed Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
title_short Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice
title_sort cerebellar neurodegeneration and neuronal circuit remodeling in golgi ph regulator-deficient mice
topic New Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541875/
https://www.ncbi.nlm.nih.gov/pubmed/31118204
http://dx.doi.org/10.1523/ENEURO.0427-18.2019
work_keys_str_mv AT souyushin cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT kakutasoichiro cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT kamikuboyuji cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT niisatokazue cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT sakuraitakashi cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT parajulilaxmikumar cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT tanidaisei cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT saitohiromitsu cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT suzukinoboru cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT sakimurakenji cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT maedayusuke cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT kinoshitataroh cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT uchiyamayasuo cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice
AT koikemasato cerebellarneurodegenerationandneuronalcircuitremodelingingolgiphregulatordeficientmice