Cargando…

Secure and Scalable mHealth Data Management Using Blockchain Combined With Client Hashchain: System Design and Validation

BACKGROUND: Blockchain is emerging as an innovative technology for secure data management in many areas, including medical practice. A distributed blockchain network is tolerant against network fault, and the registered data are resistant to tampering and revision. The technology has a high affinity...

Descripción completa

Detalles Bibliográficos
Autores principales: Motohashi, Tomomitsu, Hirano, Tomonobu, Okumura, Kosuke, Kashiyama, Makiko, Ichikawa, Daisuke, Ueno, Taro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542324/
https://www.ncbi.nlm.nih.gov/pubmed/31099337
http://dx.doi.org/10.2196/13385
Descripción
Sumario:BACKGROUND: Blockchain is emerging as an innovative technology for secure data management in many areas, including medical practice. A distributed blockchain network is tolerant against network fault, and the registered data are resistant to tampering and revision. The technology has a high affinity with digital medicine like mobile health (mHealth) and provides reliability to the medical data without labor-intensive third-party contributions. On the other hand, the reliability of the medical data is not insured before registration to the blockchain network. Furthermore, there are issues with regard to how the clients' mobile devices should be dealt with and authenticated in the blockchain network in order to avoid impersonation. OBJECTIVE: The aim of the study was to design and validate an mHealth system that enables the compatibility of the security and scalability of the medical data using blockchain technology. METHODS: We designed an mHealth system that sends medical data to the blockchain network via relay servers. The architecture provides scalability and convenience of operation of the system. In order to ensure the reliability of the data from clients' mobile devices, hash values with chain structure (client hashchain) were calculated in the clients' devices and the results were registered on the blockchain network. RESULTS: The system was applied and deployed in mHealth for insomnia treatment. Clinical trials for mHealth were conducted with insomnia patients. Medical data of the recruited patients were successfully registered with the blockchain network via relay servers along with the hashchain calculated on the clients' mobile devices. The correctness of the data was validated by identifying illegal data, which were made by simulating fraudulent access. CONCLUSIONS: Our proposed mHealth system, blockchain combined with client hashchain, ensures compatibility of security and scalability in the data management of mHealth medical practice. TRIAL REGISTRATION: UMIN Clinical Trials Registry UMIN000032951; https://upload.umin.ac.jp/cgi-open- bin/ctr_e/ctr_view.cgi?recptno=R000037564 (Archived by WebCite at http://www.webcitation.org/78HP5iFIw)