Cargando…
Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks
Computer assisted image acquisition techniques, including confocal microscopy, require efficient tools for an automatic sorting of vast amount of generated image data. The complexity of the classification process, absence of adequate tools, and insufficient amount of reference data has made the auto...
Autores principales: | Škrabánek, Pavel, Zahradníková, Alexandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542571/ https://www.ncbi.nlm.nih.gov/pubmed/31145728 http://dx.doi.org/10.1371/journal.pone.0216720 |
Ejemplares similares
-
A Structure-Aware Convolutional Neural Network for Automatic Diagnosis of Fungal Keratitis with In Vivo Confocal Microscopy Images
por: Liang, Shanshan, et al.
Publicado: (2023) -
Skin strata delineation in reflectance confocal microscopy images using recurrent convolutional networks with attention
por: Bozkurt, Alican, et al.
Publicado: (2021) -
Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation
por: Mao, Hongda, et al.
Publicado: (2013) -
Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images
por: Yıldız, Erdost, et al.
Publicado: (2021) -
A Hybrid System for Automatic Identification of Corneal Layers on In Vivo Confocal Microscopy Images
por: Tang, Ningning, et al.
Publicado: (2023)