Cargando…

Integrate CRISPR/Cas9 for protein expression of HLA-B*38:68Q via precise gene editing

The determination of null- or low-expressed HLA alleles is clinically relevant in both hematopoietic stem cell transplantation and solid organ transplantation. We studied the expression level of a questionable (Q) HLA-B*38:68Q allele, which carries a 9-nucleotide (nt) deletion at codon 230–232 in ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Yuxin, Reed, Elaine F., Zhang, Qiuheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542842/
https://www.ncbi.nlm.nih.gov/pubmed/31147565
http://dx.doi.org/10.1038/s41598-019-44336-7
Descripción
Sumario:The determination of null- or low-expressed HLA alleles is clinically relevant in both hematopoietic stem cell transplantation and solid organ transplantation. We studied the expression level of a questionable (Q) HLA-B*38:68Q allele, which carries a 9-nucleotide (nt) deletion at codon 230–232 in exon 4 of HLA-B*38:01:01:01 using CRISPR/Cas9 gene editing technology. CRISPR/Cas9 gene editing of HLA-B*38:01:01:01 homozygous EBV B cell line resulted in one HLA-B*38:68Q/B*38:01:01:01 heterozygous and one HLA-B*38:68Q homozygous clone. Flow cytometric analysis of monoclonal anti-Bw4 antibody showed the protein expression of HLA-B*38:01:01:01 in homozygous cells was 2.2 fold higher than HLA-B*38:68Q/B*38:01:01:01 heterozygous cells, and the expression of HLA-B*38:68Q/B*38:01:01:01 heterozygous cells was over 2.0 fold higher than HLA-B*38:68Q homozygous cells. The HLA-B*38:68Q expression was further confirmed using anti-B38 polyclonal antibody. Similarly, the expression of the HLA-B*38:01:01:01 homozygous cells was 1.5 fold higher than that of HLA-B*38:68Q/B*38:01:01:01 heterozygous cells, and the HLA-B*38:68Q/B*38:01:01:01 heterozygous cells was over 1.6 fold higher than that of HLA-B*38:68Q homozygous cells. The treatment of HLA-B*38:68Q homozygous cells with IFN-γ significantly increased its expression. In conclusion, we demonstrate that HLA-B*38:68Q is a low-expressing HLA allele. The CRISPR/Cas9 technology is a useful tool to induce precise gene editing in HLA genes to enable the characterization of HLA gene variants on expression and function.