Cargando…

Plasmonic colours predicted by deep learning

Picosecond laser pulses have been used as a surface colouring technique for noble metals, where the colours result from plasmonic resonances in the metallic nanoparticles created and redeposited on the surface by ablation and deposition processes. This technology provides two datasets which we use t...

Descripción completa

Detalles Bibliográficos
Autores principales: Baxter, Joshua, Calà Lesina, Antonino, Guay, Jean-Michel, Weck, Arnaud, Berini, Pierre, Ramunno, Lora
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542855/
https://www.ncbi.nlm.nih.gov/pubmed/31147587
http://dx.doi.org/10.1038/s41598-019-44522-7
Descripción
Sumario:Picosecond laser pulses have been used as a surface colouring technique for noble metals, where the colours result from plasmonic resonances in the metallic nanoparticles created and redeposited on the surface by ablation and deposition processes. This technology provides two datasets which we use to train artificial neural networks, data from the experiment itself (laser parameters vs. colours) and data from the corresponding numerical simulations (geometric parameters vs. colours). We apply deep learning to predict the colour in both cases. We also propose a method for the solution of the inverse problem – wherein the geometric parameters and the laser parameters are predicted from colour – using an iterative multivariable inverse design method.