Cargando…
How to measure temporal changes in care pathways for chronic diseases using health care registry data
BACKGROUND: Disease trajectories for chronic diseases can span over several decades, with several time-dependent factors affecting treatment decisions. Thus, there is a need for long-term predictions of disease trajectories to inform patients and healthcare professionals on the long-term outcomes an...
Autores principales: | Ventimiglia, Eugenio, Van Hemelrijck, Mieke, Lindhagen, Lars, Stattin, Pär, Garmo, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543619/ https://www.ncbi.nlm.nih.gov/pubmed/31146754 http://dx.doi.org/10.1186/s12911-019-0823-y |
Ejemplares similares
-
How to model temporal changes in comorbidity for cancer patients using prospective cohort data
por: Lindhagen, Lars, et al.
Publicado: (2015) -
Population-based estimates of age and comorbidity specific life expectancy: a first application in Swedish males
por: Van Hemelrijck, Mieke, et al.
Publicado: (2022) -
Cohort Profile Update: The National Prostate Cancer Register of Sweden and Prostate Cancer data Base—a refined prostate cancer trajectory
por: Van Hemelrijck, Mieke, et al.
Publicado: (2016) -
The Value of Real-World Data in Understanding Prostate Cancer Risk and Improving Clinical Care: Examples from Swedish Registries
por: Beckmann, Kerri, et al.
Publicado: (2021) -
Causes of death in men with localized prostate cancer: a nationwide, population‐based study
por: Van Hemelrijck, Mieke, et al.
Publicado: (2015)