Cargando…

Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy

BACKGROUND: Standard radiobiology theory of radiation response assumes a uniform innate radiosensitivity of tumors. However, experimental data show that there is significant intratumoral heterogeneity of radiosensitivity. Therefore, a model with heterogeneity was developed and tested using existing...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfonso, J. C. L., Berk, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543639/
https://www.ncbi.nlm.nih.gov/pubmed/31146751
http://dx.doi.org/10.1186/s13014-019-1288-y
_version_ 1783423119196684288
author Alfonso, J. C. L.
Berk, L.
author_facet Alfonso, J. C. L.
Berk, L.
author_sort Alfonso, J. C. L.
collection PubMed
description BACKGROUND: Standard radiobiology theory of radiation response assumes a uniform innate radiosensitivity of tumors. However, experimental data show that there is significant intratumoral heterogeneity of radiosensitivity. Therefore, a model with heterogeneity was developed and tested using existing experimental data to show the potential effects from the presence of an intratumoral distribution of radiosensitivity on radiation therapy response over a protracted radiation therapy treatment course. METHODS: The standard radiation response curve was modified to account for a distribution of radiosensitivity, and for variations in the repopulation rates of the tumor cell subpopulations. Experimental data from the literature were incorporated to determine the boundaries of the model. The proposed model was then used to show the changes in radiosensitivity of the tumor during treatment, and the effects of fraction size, α/β ratio and variation of the repopulation rates of tumor cells. RESULTS: In the presence of an intratumoral distribution of radiosensitivity, there is rapid selection of radiation-resistant cells over a course of fractionated radiation therapy. Standard treatment fractionation regimes result in the near-complete replacement of the initial population of sensitive cells with a population of more resistant cells. Further, as treatment progresses, the tumor becomes more resistant to further radiation treatment, making each fractional dose less efficacious. A wider initial distribution induces increased radiation resistance. Hypofractionation is more efficient in a heterogeneous tumor, with increased cell kill for biologically equivalent doses, while inducing less resistance. The model also shows that a higher growth rate in resistant cells can account for the accelerated repopulation that is seen during the clinical treatment of patients. CONCLUSIONS: Modeling of tumor cell survival with radiosensitivity heterogeneity alters the predicted tumor response, and explains the induction of radiation resistance by radiation treatment, the development of accelerated repopulation, and the potential beneficial effects of hypofractionation. Tumor response to treatment may be better predicted by assaying for the distribution of radiosensitivity, or the extreme of the radiosensitivity, rather than measuring the initial, general radiation sensitivity of the untreated tumor.
format Online
Article
Text
id pubmed-6543639
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-65436392019-06-04 Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy Alfonso, J. C. L. Berk, L. Radiat Oncol Research BACKGROUND: Standard radiobiology theory of radiation response assumes a uniform innate radiosensitivity of tumors. However, experimental data show that there is significant intratumoral heterogeneity of radiosensitivity. Therefore, a model with heterogeneity was developed and tested using existing experimental data to show the potential effects from the presence of an intratumoral distribution of radiosensitivity on radiation therapy response over a protracted radiation therapy treatment course. METHODS: The standard radiation response curve was modified to account for a distribution of radiosensitivity, and for variations in the repopulation rates of the tumor cell subpopulations. Experimental data from the literature were incorporated to determine the boundaries of the model. The proposed model was then used to show the changes in radiosensitivity of the tumor during treatment, and the effects of fraction size, α/β ratio and variation of the repopulation rates of tumor cells. RESULTS: In the presence of an intratumoral distribution of radiosensitivity, there is rapid selection of radiation-resistant cells over a course of fractionated radiation therapy. Standard treatment fractionation regimes result in the near-complete replacement of the initial population of sensitive cells with a population of more resistant cells. Further, as treatment progresses, the tumor becomes more resistant to further radiation treatment, making each fractional dose less efficacious. A wider initial distribution induces increased radiation resistance. Hypofractionation is more efficient in a heterogeneous tumor, with increased cell kill for biologically equivalent doses, while inducing less resistance. The model also shows that a higher growth rate in resistant cells can account for the accelerated repopulation that is seen during the clinical treatment of patients. CONCLUSIONS: Modeling of tumor cell survival with radiosensitivity heterogeneity alters the predicted tumor response, and explains the induction of radiation resistance by radiation treatment, the development of accelerated repopulation, and the potential beneficial effects of hypofractionation. Tumor response to treatment may be better predicted by assaying for the distribution of radiosensitivity, or the extreme of the radiosensitivity, rather than measuring the initial, general radiation sensitivity of the untreated tumor. BioMed Central 2019-05-30 /pmc/articles/PMC6543639/ /pubmed/31146751 http://dx.doi.org/10.1186/s13014-019-1288-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Alfonso, J. C. L.
Berk, L.
Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
title Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
title_full Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
title_fullStr Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
title_full_unstemmed Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
title_short Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
title_sort modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543639/
https://www.ncbi.nlm.nih.gov/pubmed/31146751
http://dx.doi.org/10.1186/s13014-019-1288-y
work_keys_str_mv AT alfonsojcl modelingtheeffectofintratumoralheterogeneityofradiosensitivityontumorresponseoverthecourseoffractionatedradiationtherapy
AT berkl modelingtheeffectofintratumoralheterogeneityofradiosensitivityontumorresponseoverthecourseoffractionatedradiationtherapy