Cargando…
Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times
Drug-target residence times can impact drug efficacy and safety, and are therefore increasingly being considered during lead optimization. For this purpose, computational methods to predict residence times, τ, for drug-like compounds and to derive structure-kinetic relationships are desirable. A cha...
Autores principales: | Kokh, Daria B., Kaufmann, Tom, Kister, Bastian, Wade, Rebecca C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543870/ https://www.ncbi.nlm.nih.gov/pubmed/31179286 http://dx.doi.org/10.3389/fmolb.2019.00036 |
Ejemplares similares
-
Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations
por: Nunes-Alves, Ariane, et al.
Publicado: (2021) -
Mathematics's role in the grand challenge of deciphering the molecular basis of life
por: Koehl, Patrice
Publicado: (2014) -
Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations
por: Barbot, Thomas, et al.
Publicado: (2021) -
Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities
por: Akash, Muhammad Sajid Hamid, et al.
Publicado: (2023) -
Corrigendum: Deciphering the mechanism of inhibition of SERCA1a by sarcolipin using molecular simulations
por: Barbot, Thomas, et al.
Publicado: (2022)