Cargando…
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
BACKGROUND: Malaria is a life-threatening disease caused by Plasmodium parasites that infect the red blood cells (RBCs). Manual identification and counting of parasitized cells in microscopic thick/thin-film blood examination remains the common, but burdensome method for disease diagnosis. Its diagn...
Autores principales: | Rajaraman, Sivaramakrishnan, Jaeger, Stefan, Antani, Sameer K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544011/ https://www.ncbi.nlm.nih.gov/pubmed/31179181 http://dx.doi.org/10.7717/peerj.6977 |
Ejemplares similares
-
Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2018) -
Detection and visualization of abnormality in chest radiographs using modality-specific convolutional neural network ensembles
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Novel loss functions for ensemble-based medical image classification
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022)