Cargando…
Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
A stable walking pattern is presumably essential to avoid falls. Stability of walking is most accurately determined by the short-term local dynamic stability (maximum Lyapunov exponent) of the body centre of mass. In many studies related to fall risk, however, variability of step width is considered...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544240/ https://www.ncbi.nlm.nih.gov/pubmed/31150452 http://dx.doi.org/10.1371/journal.pone.0217460 |
_version_ | 1783423220800552960 |
---|---|
author | König Ignasiak, Niklas Ravi, Deepak K. Orter, Stefan Hosseini Nasab, Seyyed Hamed Taylor, William R. Singh, Navrag B. |
author_facet | König Ignasiak, Niklas Ravi, Deepak K. Orter, Stefan Hosseini Nasab, Seyyed Hamed Taylor, William R. Singh, Navrag B. |
author_sort | König Ignasiak, Niklas |
collection | PubMed |
description | A stable walking pattern is presumably essential to avoid falls. Stability of walking is most accurately determined by the short-term local dynamic stability (maximum Lyapunov exponent) of the body centre of mass. In many studies related to fall risk, however, variability of step width is considered to be indicative of the stability of the centre of mass during walking. However, other footfall parameters, in particular variability of stride time, have also been associated with increased risk for falling. Therefore, the aim of this study was to investigate the association between short-term local dynamic stability of the body centre of mass and different measures of footfall variability. Twenty subjects performed unperturbed walking trials on a treadmill and under increased (addition of 40% body weight) and decreased (harness system) demands to stabilise the body centre of mass. Association between stability of the centre of mass and footfall parameters was established using a structural equation model. Walking with additional body weight lead to greater instability of the centre of mass and increased stride time variability, however had no effect on step width variability. Supported walking in the harness system did not increase centre of mass stability further, however, led to a significant decrease of step width and increase in stride time variability. A structural equation model could only predict 8% of the variance of the centre of mass stability after variability of step width, stride time and stride length were included. A model which included only step width variability as exogenous variable, failed to predict centre of mass stability. Because of the failure to predict centre of mass stability in this study, it appears, that the stability of the centre of mass is controlled by more complex interaction of sagittal and frontal plane temporal and spatial footfall parameters, than those observed by standard variability measures. Anyway, this study does not support the application of step width variability as indicator for medio-lateral stability of the centre of mass during walking. |
format | Online Article Text |
id | pubmed-6544240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65442402019-06-17 Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? König Ignasiak, Niklas Ravi, Deepak K. Orter, Stefan Hosseini Nasab, Seyyed Hamed Taylor, William R. Singh, Navrag B. PLoS One Research Article A stable walking pattern is presumably essential to avoid falls. Stability of walking is most accurately determined by the short-term local dynamic stability (maximum Lyapunov exponent) of the body centre of mass. In many studies related to fall risk, however, variability of step width is considered to be indicative of the stability of the centre of mass during walking. However, other footfall parameters, in particular variability of stride time, have also been associated with increased risk for falling. Therefore, the aim of this study was to investigate the association between short-term local dynamic stability of the body centre of mass and different measures of footfall variability. Twenty subjects performed unperturbed walking trials on a treadmill and under increased (addition of 40% body weight) and decreased (harness system) demands to stabilise the body centre of mass. Association between stability of the centre of mass and footfall parameters was established using a structural equation model. Walking with additional body weight lead to greater instability of the centre of mass and increased stride time variability, however had no effect on step width variability. Supported walking in the harness system did not increase centre of mass stability further, however, led to a significant decrease of step width and increase in stride time variability. A structural equation model could only predict 8% of the variance of the centre of mass stability after variability of step width, stride time and stride length were included. A model which included only step width variability as exogenous variable, failed to predict centre of mass stability. Because of the failure to predict centre of mass stability in this study, it appears, that the stability of the centre of mass is controlled by more complex interaction of sagittal and frontal plane temporal and spatial footfall parameters, than those observed by standard variability measures. Anyway, this study does not support the application of step width variability as indicator for medio-lateral stability of the centre of mass during walking. Public Library of Science 2019-05-31 /pmc/articles/PMC6544240/ /pubmed/31150452 http://dx.doi.org/10.1371/journal.pone.0217460 Text en © 2019 König Ignasiak et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article König Ignasiak, Niklas Ravi, Deepak K. Orter, Stefan Hosseini Nasab, Seyyed Hamed Taylor, William R. Singh, Navrag B. Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
title | Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
title_full | Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
title_fullStr | Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
title_full_unstemmed | Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
title_short | Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
title_sort | does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544240/ https://www.ncbi.nlm.nih.gov/pubmed/31150452 http://dx.doi.org/10.1371/journal.pone.0217460 |
work_keys_str_mv | AT konigignasiakniklas doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking AT ravideepakk doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking AT orterstefan doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking AT hosseininasabseyyedhamed doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking AT taylorwilliamr doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking AT singhnavragb doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking |