Cargando…
Model-free feature screening for categorical outcomes: Nonlinear effect detection and false discovery rate control
Feature screening has become a real prerequisite for the analysis of high-dimensional genomic data, as it is effective in reducing dimensionality and removing redundant features. However, existing methods for feature screening have been mostly relying on the assumptions of linear effects and indepen...
Autores principales: | Zhang, Qingyang, Du, Yuchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544247/ https://www.ncbi.nlm.nih.gov/pubmed/31150453 http://dx.doi.org/10.1371/journal.pone.0217463 |
Ejemplares similares
-
Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control
por: Zhang, Qingyang
Publicado: (2020) -
Null-free False Discovery Rate Control Using Decoy Permutations
por: He, Kun, et al.
Publicado: (2022) -
Controlling the Rate of GWAS False Discoveries
por: Brzyski, Damian, et al.
Publicado: (2017) -
Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate
por: Motulsky, Harvey J, et al.
Publicado: (2006) -
Hit selection with false discovery rate control in genome-scale RNAi screens
por: Zhang, Xiaohua Douglas, et al.
Publicado: (2008)