Cargando…
Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration
Accurately predicting reference evapotranspiration (ET(0)) with limited climatic data is crucial for irrigation scheduling design and agricultural water management. This study evaluated eight machine learning models in four categories, i.e. neuron-based (MLP, GRNN and ANFIS), kernel-based (SVM, KNEA...
Autores principales: | Wu, Lifeng, Fan, Junliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544265/ https://www.ncbi.nlm.nih.gov/pubmed/31150448 http://dx.doi.org/10.1371/journal.pone.0217520 |
Ejemplares similares
-
Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables
por: Wu, Tianao, et al.
Publicado: (2020) -
Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model
por: Jia, Weibing, et al.
Publicado: (2023) -
An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration
por: Ehteram, Mohammad, et al.
Publicado: (2019) -
Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing
por: Dias, Santos Henrique Brant, et al.
Publicado: (2021) -
Estimating daily potential evapotranspiration using GNSS-based precipitable water vapor
por: Pipatsitee, Piyanan, et al.
Publicado: (2023)