Cargando…
Detecting interaction networks in the human microbiome with conditional Granger causality
Human microbiome research is rife with studies attempting to deduce microbial correlation networks from sequencing data. Standard correlation and/or network analyses may be misleading when taken as an indication of taxon interactions because “correlation is neither necessary nor sufficient to establ...
Autores principales: | Mainali, Kumar, Bewick, Sharon, Vecchio-Pagan, Briana, Karig, David, Fagan, William F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544333/ https://www.ncbi.nlm.nih.gov/pubmed/31107866 http://dx.doi.org/10.1371/journal.pcbi.1007037 |
Ejemplares similares
-
A Stoichioproteomic Analysis of Samples from the Human Microbiome Project
por: Vecchio-Pagan, Briana, et al.
Publicado: (2017) -
Granger causality revisited
por: Friston, Karl J., et al.
Publicado: (2014) -
Trait-based analysis of the human skin microbiome
por: Bewick, Sharon, et al.
Publicado: (2019) -
Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality
por: Wu, G, et al.
Publicado: (2013) -
Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality
por: Yang, Guanxue, et al.
Publicado: (2017)