Cargando…
Direct link between mechanical stability in gels and percolation of isostatic particles
Colloidal gels have unique mechanical and transport properties that stem from their bicontinuous nature, in which a colloidal network is intertwined with a viscous solvent, and have found numerous applications in foods, cosmetics, and construction materials and for medical applications, such as cart...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544450/ https://www.ncbi.nlm.nih.gov/pubmed/31172025 http://dx.doi.org/10.1126/sciadv.aav6090 |
_version_ | 1783423260048752640 |
---|---|
author | Tsurusawa, Hideyo Leocmach, Mathieu Russo, John Tanaka, Hajime |
author_facet | Tsurusawa, Hideyo Leocmach, Mathieu Russo, John Tanaka, Hajime |
author_sort | Tsurusawa, Hideyo |
collection | PubMed |
description | Colloidal gels have unique mechanical and transport properties that stem from their bicontinuous nature, in which a colloidal network is intertwined with a viscous solvent, and have found numerous applications in foods, cosmetics, and construction materials and for medical applications, such as cartilage replacements. So far, our understanding of the process of colloidal gelation is limited to long-time dynamical effects, where gelation is viewed as a phase separation process interrupted by the glass transition. However, this purely out-of-equilibrium thermodynamic picture does not address the emergence of mechanical stability. With confocal microscopy experiments, we reveal that mechanical metastability is reached only after isotropic percolation of locally isostatic environments, establishing a direct link between the load-bearing ability of gels and the isostaticity condition. Our work suggests an operative description of gels based on mechanical equilibrium and isostaticity, providing the physical basis for the stability and rheology of these materials. |
format | Online Article Text |
id | pubmed-6544450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65444502019-06-06 Direct link between mechanical stability in gels and percolation of isostatic particles Tsurusawa, Hideyo Leocmach, Mathieu Russo, John Tanaka, Hajime Sci Adv Research Articles Colloidal gels have unique mechanical and transport properties that stem from their bicontinuous nature, in which a colloidal network is intertwined with a viscous solvent, and have found numerous applications in foods, cosmetics, and construction materials and for medical applications, such as cartilage replacements. So far, our understanding of the process of colloidal gelation is limited to long-time dynamical effects, where gelation is viewed as a phase separation process interrupted by the glass transition. However, this purely out-of-equilibrium thermodynamic picture does not address the emergence of mechanical stability. With confocal microscopy experiments, we reveal that mechanical metastability is reached only after isotropic percolation of locally isostatic environments, establishing a direct link between the load-bearing ability of gels and the isostaticity condition. Our work suggests an operative description of gels based on mechanical equilibrium and isostaticity, providing the physical basis for the stability and rheology of these materials. American Association for the Advancement of Science 2019-05-31 /pmc/articles/PMC6544450/ /pubmed/31172025 http://dx.doi.org/10.1126/sciadv.aav6090 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Tsurusawa, Hideyo Leocmach, Mathieu Russo, John Tanaka, Hajime Direct link between mechanical stability in gels and percolation of isostatic particles |
title | Direct link between mechanical stability in gels and percolation of isostatic particles |
title_full | Direct link between mechanical stability in gels and percolation of isostatic particles |
title_fullStr | Direct link between mechanical stability in gels and percolation of isostatic particles |
title_full_unstemmed | Direct link between mechanical stability in gels and percolation of isostatic particles |
title_short | Direct link between mechanical stability in gels and percolation of isostatic particles |
title_sort | direct link between mechanical stability in gels and percolation of isostatic particles |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544450/ https://www.ncbi.nlm.nih.gov/pubmed/31172025 http://dx.doi.org/10.1126/sciadv.aav6090 |
work_keys_str_mv | AT tsurusawahideyo directlinkbetweenmechanicalstabilityingelsandpercolationofisostaticparticles AT leocmachmathieu directlinkbetweenmechanicalstabilityingelsandpercolationofisostaticparticles AT russojohn directlinkbetweenmechanicalstabilityingelsandpercolationofisostaticparticles AT tanakahajime directlinkbetweenmechanicalstabilityingelsandpercolationofisostaticparticles |