Cargando…

Bioinspired, graphene-enabled Ni composites with high strength and toughness

Nature’s wisdom resides in achieving a joint enhancement of strength and toughness by constructing intelligent, hierarchical architectures from extremely limited resources. A representative example is nacre, in which a brick-and-mortar structure enables a confluence of toughening mechanisms on multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yunya, Heim, Frederick M., Bartlett, Jamison L., Song, Ningning, Isheim, Dieter, Li, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544452/
https://www.ncbi.nlm.nih.gov/pubmed/31172024
http://dx.doi.org/10.1126/sciadv.aav5577
Descripción
Sumario:Nature’s wisdom resides in achieving a joint enhancement of strength and toughness by constructing intelligent, hierarchical architectures from extremely limited resources. A representative example is nacre, in which a brick-and-mortar structure enables a confluence of toughening mechanisms on multiple length scales. The result is an outstanding combination of strength and toughness which is hardly achieved by engineering materials. Here, a bioinspired Ni/Ni(3)C composite with nacre-like, brick-and-mortar structure was constructed from Ni powders and graphene sheets. This composite achieved a 73% increase in strength with only a 28% compromise on ductility, leading to a notable improvement in toughness. The graphene-derived Ni-Ti-Al/Ni(3)C composite retained high hardness up to 1000°C. The present study unveiled a method to smartly use 2D materials to fabricate high-performance metal matrix composites with brick-and-mortar structure through interfacial reactions and, furthermore, created an opportunity of developing advanced Ni-C–based alloys for high-temperature environments.