Cargando…
Learning from droplet flows in microfluidic channels using deep neural networks
A non-intrusive method is presented for measuring different fluidic properties in a microfluidic chip by optically monitoring the flow of droplets. A neural network is used to extract the desired information from the images of the droplets. We demonstrate the method in two applications: measurement...
Autores principales: | Hadikhani, Pooria, Borhani, Navid, H. Hashemi, S. Mohammad, Psaltis, Demetri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544611/ https://www.ncbi.nlm.nih.gov/pubmed/31148559 http://dx.doi.org/10.1038/s41598-019-44556-x |
Ejemplares similares
-
A membrane-less electrolyzer with porous walls for high throughput and pure hydrogen production
por: Hadikhani, Pooria, et al.
Publicado: (2021) -
Multimode optical fiber transmission with a deep learning network
por: Rahmani, Babak, et al.
Publicado: (2018) -
Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels
por: Korczyk, Piotr M., et al.
Publicado: (2019) -
Deep learning with microfluidics for on-chip droplet generation, control, and analysis
por: Sun, Hao, et al.
Publicado: (2023) -
Droplets Formation and Merging in Two-Phase Flow Microfluidics
por: Gu, Hao, et al.
Publicado: (2011)