Cargando…
Insights and approaches using deep learning to classify wildlife
The implementation of intelligent software to identify and classify objects and individuals in visual fields is a technology of growing importance to operatives in many fields, including wildlife conservation and management. To non-experts, the methods can be abstruse and the results mystifying. Her...
Autores principales: | Miao, Zhongqi, Gaynor, Kaitlyn M., Wang, Jiayun, Liu, Ziwei, Muellerklein, Oliver, Norouzzadeh, Mohammad Sadegh, McInturff, Alex, Bowie, Rauri C. K., Nathan, Ran, Yu, Stella X., Getz, Wayne M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544615/ https://www.ncbi.nlm.nih.gov/pubmed/31148564 http://dx.doi.org/10.1038/s41598-019-44565-w |
Ejemplares similares
-
Comparing invasive and noninvasive faecal sampling in wildlife microbiome studies: A case study on wild common cranes
por: Turjeman, Sondra, et al.
Publicado: (2022) -
Site fidelity and behavioral plasticity regulate an ungulate’s response to extreme disturbance
por: Kreling, Samantha E.S., et al.
Publicado: (2021) -
Linking migration and microbiota at a major stopover site in a long-distance avian migrant
por: Thie, Nikki, et al.
Publicado: (2022) -
Monitoring canid scent marking in space and time using a biologging and machine learning approach
por: Bidder, Owen R., et al.
Publicado: (2020) -
20th International Conference on Magnet Technology
por: McInturff, Alfred
Publicado: (2008)