Cargando…
Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production
Aerial imagery is regularly used by crop researchers, growers and farmers to monitor crops during the growing season. To extract meaningful information from large-scale aerial images collected from the field, high-throughput phenotypic analysis solutions are required, which not only produce high-qua...
Autores principales: | Bauer, Alan, Bostrom, Aaron George, Ball, Joshua, Applegate, Christopher, Cheng, Tao, Laycock, Stephen, Rojas, Sergio Moreno, Kirwan, Jacob, Zhou, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544649/ https://www.ncbi.nlm.nih.gov/pubmed/31231528 http://dx.doi.org/10.1038/s41438-019-0151-5 |
Ejemplares similares
-
LettuceTrack: Detection and tracking of lettuce for robotic precision spray in agriculture
por: Hu, Nan, et al.
Publicado: (2022) -
Development of a Light-Weight Unmanned Aerial Vehicle for Precision Agriculture
por: Ukaegbu, Uchechi F., et al.
Publicado: (2021) -
Ultra-Rapid Vision in Birds
por: Boström, Jannika E., et al.
Publicado: (2016) -
Machine Vision Systems in Precision Agriculture for Crop Farming
por: Mavridou, Efthimia, et al.
Publicado: (2019) -
The ‘Digital Twin’ to enable the vision of precision cardiology
por: Corral-Acero, Jorge, et al.
Publicado: (2020)