Cargando…

Altered functional connectivity associated with time discounting in chronic pain

Chronic pain (CP) is a global problem extensively associated with an unhealthy lifestyle. Time discounting (TD), a tendency to assign less value to future gains than to present gains, is an indicator of the unhealthy behaviors. While, recent neuroimaging studies implied overlapping neuro mechanisms...

Descripción completa

Detalles Bibliográficos
Autores principales: Wakaizumi, Kenta, Jabakhanji, Rami, Ihara, Naho, Kosugi, Shizuko, Terasawa, Yuri, Morisaki, Hiroshi, Ogaki, Masao, Baliki, Marwan N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544657/
https://www.ncbi.nlm.nih.gov/pubmed/31148557
http://dx.doi.org/10.1038/s41598-019-44497-5
Descripción
Sumario:Chronic pain (CP) is a global problem extensively associated with an unhealthy lifestyle. Time discounting (TD), a tendency to assign less value to future gains than to present gains, is an indicator of the unhealthy behaviors. While, recent neuroimaging studies implied overlapping neuro mechanisms underlying CP and TD, little is known about the specific relationship between CP and TD in behavior or neuroscience. As such, we investigated the association of TD with behavioral measures in CP and resting-state brain functional network in both CP patients and healthy subjects. Behaviorally, TD showed a significant correlation with meaningfulness in healthy subjects, whereas TD in patients only correlated with pain intensity. We identified a specific network including medial and dorsolateral prefrontal cortex (PFC) in default mode network (DMN) associated with TD in healthy subjects that showed significant indirect mediation effect of meaningfulness on TD. In contrast, TD in patients was correlated with functional connectivity between dorsolateral PFC (DLPFC) and temporal lobe that mediated the effect of pain intensity on TD in patients. These results imply that TD is modulated by pain intensity in CP patients, and the brain function associated to TD is shifted from a medial to lateral representation within the frontal regions.