Cargando…

The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures

In Nature, despite the diversity of materials, patterns and structural designs, the majority of biomineralized systems share a common feature: the incorporation of multiple sets of discrete elements across different length scales. This paper is the first to assess whether the design features observe...

Descripción completa

Detalles Bibliográficos
Autores principales: Robson Brown, K., Bacheva, D., Trask, R. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544886/
https://www.ncbi.nlm.nih.gov/pubmed/31064257
http://dx.doi.org/10.1098/rsif.2018.0965
_version_ 1783423307745329152
author Robson Brown, K.
Bacheva, D.
Trask, R. S.
author_facet Robson Brown, K.
Bacheva, D.
Trask, R. S.
author_sort Robson Brown, K.
collection PubMed
description In Nature, despite the diversity of materials, patterns and structural designs, the majority of biomineralized systems share a common feature: the incorporation of multiple sets of discrete elements across different length scales. This paper is the first to assess whether the design features observed in the hexactinellid sea sponge Euplectella aspergillum can be transferred and implemented for the development of new structurally efficient engineering architectures manufactured by three-dimensional (3D) additive manufacturing (AM). We present an investigation into the design and survival strategies found in the biological system and evaluate their translation into a scaled engineering analogue assessed experimentally and through finite-element (FE) simulations. Discrete sections of the skeletal lattice were evaluated and tested in an in situ compression fixture using micro-computed tomography (μCT). This methodology permitted the characterization of the hierarchical organization of the siliceous skeleton; a multi-layered arrangement with a fusion between struts to improve the local energy-absorbing capabilities. It was observed that the irregular overlapping architecture of spicule–nodal point sub-structure offers unique improvements in the global strength and stiffness of the structure. The 3D data arising from the μCT of the skeleton were used to create accurate FE models and replication through 3D AM. The printed struts in the engineering analogue were homogeneous, comprising bonded ceramic granular particles (10–100 µm) with an outer epoxy infused shell. In these specimens, the compressive response of the sample was expected to be dynamic and catastrophic, but while the specimens showed a similar initiation and propagation failure pattern to E. aspergillum, the macroscopic deformation behaviour was altered from the expected predominantly brittle behaviour to a more damage tolerant quasi-brittle failure mode. In addition, the FE simulation of the printed construct predicted the same global failure response (initiation location and propagation directionality) as observed in E. aspergillum. The ability to mimic directly the complex material construction and design features in E. aspergillum is currently beyond the latest advances in AM. However, while acknowledging the material-dominated limitations, the results presented here highlight the considerable potential of direct mimicry of biomineralized lattice architectures as future light-weight damage tolerant composite structures.
format Online
Article
Text
id pubmed-6544886
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-65448862019-06-12 The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures Robson Brown, K. Bacheva, D. Trask, R. S. J R Soc Interface Life Sciences–Engineering interface In Nature, despite the diversity of materials, patterns and structural designs, the majority of biomineralized systems share a common feature: the incorporation of multiple sets of discrete elements across different length scales. This paper is the first to assess whether the design features observed in the hexactinellid sea sponge Euplectella aspergillum can be transferred and implemented for the development of new structurally efficient engineering architectures manufactured by three-dimensional (3D) additive manufacturing (AM). We present an investigation into the design and survival strategies found in the biological system and evaluate their translation into a scaled engineering analogue assessed experimentally and through finite-element (FE) simulations. Discrete sections of the skeletal lattice were evaluated and tested in an in situ compression fixture using micro-computed tomography (μCT). This methodology permitted the characterization of the hierarchical organization of the siliceous skeleton; a multi-layered arrangement with a fusion between struts to improve the local energy-absorbing capabilities. It was observed that the irregular overlapping architecture of spicule–nodal point sub-structure offers unique improvements in the global strength and stiffness of the structure. The 3D data arising from the μCT of the skeleton were used to create accurate FE models and replication through 3D AM. The printed struts in the engineering analogue were homogeneous, comprising bonded ceramic granular particles (10–100 µm) with an outer epoxy infused shell. In these specimens, the compressive response of the sample was expected to be dynamic and catastrophic, but while the specimens showed a similar initiation and propagation failure pattern to E. aspergillum, the macroscopic deformation behaviour was altered from the expected predominantly brittle behaviour to a more damage tolerant quasi-brittle failure mode. In addition, the FE simulation of the printed construct predicted the same global failure response (initiation location and propagation directionality) as observed in E. aspergillum. The ability to mimic directly the complex material construction and design features in E. aspergillum is currently beyond the latest advances in AM. However, while acknowledging the material-dominated limitations, the results presented here highlight the considerable potential of direct mimicry of biomineralized lattice architectures as future light-weight damage tolerant composite structures. The Royal Society 2019-05 2019-05-08 /pmc/articles/PMC6544886/ /pubmed/31064257 http://dx.doi.org/10.1098/rsif.2018.0965 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Life Sciences–Engineering interface
Robson Brown, K.
Bacheva, D.
Trask, R. S.
The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
title The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
title_full The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
title_fullStr The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
title_full_unstemmed The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
title_short The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
title_sort structural efficiency of the sea sponge euplectella aspergillum skeleton: bio-inspiration for 3d printed architectures
topic Life Sciences–Engineering interface
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544886/
https://www.ncbi.nlm.nih.gov/pubmed/31064257
http://dx.doi.org/10.1098/rsif.2018.0965
work_keys_str_mv AT robsonbrownk thestructuralefficiencyoftheseaspongeeuplectellaaspergillumskeletonbioinspirationfor3dprintedarchitectures
AT bachevad thestructuralefficiencyoftheseaspongeeuplectellaaspergillumskeletonbioinspirationfor3dprintedarchitectures
AT traskrs thestructuralefficiencyoftheseaspongeeuplectellaaspergillumskeletonbioinspirationfor3dprintedarchitectures
AT robsonbrownk structuralefficiencyoftheseaspongeeuplectellaaspergillumskeletonbioinspirationfor3dprintedarchitectures
AT bachevad structuralefficiencyoftheseaspongeeuplectellaaspergillumskeletonbioinspirationfor3dprintedarchitectures
AT traskrs structuralefficiencyoftheseaspongeeuplectellaaspergillumskeletonbioinspirationfor3dprintedarchitectures