Cargando…

Four-dimensional Fano quiver flag zero loci

Quiver flag zero loci are subvarieties of quiver flag varieties cut out by sections of representation theoretic vector bundles. We prove the Abelian/non-Abelian correspondence in this context: this allows us to compute genus zero Gromov–Witten invariants of quiver flag zero loci. We determine the am...

Descripción completa

Detalles Bibliográficos
Autor principal: Kalashnikov, Elana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545056/
https://www.ncbi.nlm.nih.gov/pubmed/31236045
http://dx.doi.org/10.1098/rspa.2018.0791
_version_ 1783423341362675712
author Kalashnikov, Elana
author_facet Kalashnikov, Elana
author_sort Kalashnikov, Elana
collection PubMed
description Quiver flag zero loci are subvarieties of quiver flag varieties cut out by sections of representation theoretic vector bundles. We prove the Abelian/non-Abelian correspondence in this context: this allows us to compute genus zero Gromov–Witten invariants of quiver flag zero loci. We determine the ample cone of a quiver flag variety, and disprove a conjecture of Craw. In the appendices (which can be found in the electronic supplementary material), which are joint work with Tom Coates and Alexander Kasprzyk, we use these results to find four-dimensional Fano manifolds that occur as quiver flag zero loci in ambient spaces of dimension up to 8, and compute their quantum periods. In this way, we find at least 141 new four-dimensional Fano manifolds.
format Online
Article
Text
id pubmed-6545056
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-65450562019-06-24 Four-dimensional Fano quiver flag zero loci Kalashnikov, Elana Proc Math Phys Eng Sci Research Article Quiver flag zero loci are subvarieties of quiver flag varieties cut out by sections of representation theoretic vector bundles. We prove the Abelian/non-Abelian correspondence in this context: this allows us to compute genus zero Gromov–Witten invariants of quiver flag zero loci. We determine the ample cone of a quiver flag variety, and disprove a conjecture of Craw. In the appendices (which can be found in the electronic supplementary material), which are joint work with Tom Coates and Alexander Kasprzyk, we use these results to find four-dimensional Fano manifolds that occur as quiver flag zero loci in ambient spaces of dimension up to 8, and compute their quantum periods. In this way, we find at least 141 new four-dimensional Fano manifolds. The Royal Society Publishing 2019-05 2019-05-15 /pmc/articles/PMC6545056/ /pubmed/31236045 http://dx.doi.org/10.1098/rspa.2018.0791 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research Article
Kalashnikov, Elana
Four-dimensional Fano quiver flag zero loci
title Four-dimensional Fano quiver flag zero loci
title_full Four-dimensional Fano quiver flag zero loci
title_fullStr Four-dimensional Fano quiver flag zero loci
title_full_unstemmed Four-dimensional Fano quiver flag zero loci
title_short Four-dimensional Fano quiver flag zero loci
title_sort four-dimensional fano quiver flag zero loci
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545056/
https://www.ncbi.nlm.nih.gov/pubmed/31236045
http://dx.doi.org/10.1098/rspa.2018.0791
work_keys_str_mv AT kalashnikovelana fourdimensionalfanoquiverflagzeroloci