Cargando…

Inductively coupled, mm-sized, single channel optical neuro-stimulator with intensity enhancer

We introduce a single channel neuro-stimulator consisting of a reflector-coupled microscale light emitting diode (µLED) with an integrated mm-sized wireless receiver (Rx) coil for free-floating, battery-free, untethered optogenetics neuromodulation. The system utilizes a two-coil inductive link to d...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Wasif, Jia, Yaoyao, Madi, Fatma, Weber, Arthur, Ghovanloo, Maysam, Li, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545326/
https://www.ncbi.nlm.nih.gov/pubmed/31231537
http://dx.doi.org/10.1038/s41378-019-0061-6
Descripción
Sumario:We introduce a single channel neuro-stimulator consisting of a reflector-coupled microscale light emitting diode (µLED) with an integrated mm-sized wireless receiver (Rx) coil for free-floating, battery-free, untethered optogenetics neuromodulation. The system utilizes a two-coil inductive link to deliver instantaneous power at a low operating frequency (<100 MHz) for continuous optical stimulation with minimized invasiveness and tissue exposure to electromagnetic radiation. Coupling a microscale reflector to the µLED provides significant light intensity enhancement compared to a bare µLED. Our activated stimulators have an operational temperature increase of <1 °C, well below the safety limit of biomedical implants. In vivo experiment and histological analysis verify the efficacy of wireless optical stimulation in the primary visual cortex of rats, using c-Fos biomarker as a reporter of light-evoked neuronal activity.