Cargando…

Happy you, happy me: expressive changes on a stranger’s voice recruit faster implicit processes than self-produced expressions

In social interactions, people have to pay attention both to the ‘what’ and ‘who’. In particular, expressive changes heard on speech signals have to be integrated with speaker identity, differentiating e.g. self- and other-produced signals. While previous research has shown that self-related visual...

Descripción completa

Detalles Bibliográficos
Autores principales: Rachman, Laura, Dubal, Stéphanie, Aucouturier, Jean-Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545538/
https://www.ncbi.nlm.nih.gov/pubmed/31044241
http://dx.doi.org/10.1093/scan/nsz030
Descripción
Sumario:In social interactions, people have to pay attention both to the ‘what’ and ‘who’. In particular, expressive changes heard on speech signals have to be integrated with speaker identity, differentiating e.g. self- and other-produced signals. While previous research has shown that self-related visual information processing is facilitated compared to non-self stimuli, evidence in the auditory modality remains mixed. Here, we compared electroencephalography (EEG) responses to expressive changes in sequence of self- or other-produced speech sounds using a mismatch negativity (MMN) passive oddball paradigm. Critically, to control for speaker differences, we used programmable acoustic transformations to create voice deviants that differed from standards in exactly the same manner, making EEG responses to such deviations comparable between sequences. Our results indicate that expressive changes on a stranger’s voice are highly prioritized in auditory processing compared to identical changes on the self-voice. Other-voice deviants generate earlier MMN onset responses and involve stronger cortical activations in a left motor and somatosensory network suggestive of an increased recruitment of resources for less internally predictable, and therefore perhaps more socially relevant, signals.