Cargando…
Facing High EEG Signals Variability during Classification Using Fractal Dimension and Different Cutoff Frequencies
In the development of a brain-computer interface (BCI), some issues should be regarded in order to improve its reliability and performance. Perhaps, one of the most challenging issues is related to the high variability of the brain signals, which directly impacts the accuracy of the classification....
Autores principales: | Salazar-Varas, R., Vazquez, Roberto A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545768/ https://www.ncbi.nlm.nih.gov/pubmed/31236108 http://dx.doi.org/10.1155/2019/9174307 |
Ejemplares similares
-
Fractal dimension analysis of resting state functional networks in schizophrenia from EEG signals
por: Ruiz de Miras, Juan, et al.
Publicado: (2023) -
Spatio-Temporal Fractal Dimension Analysis from Resting State EEG Signals in Parkinson’s Disease
por: Ruiz de Miras, Juan, et al.
Publicado: (2023) -
Fractal Dimension of EEG Activity Senses Neuronal Impairment in Acute Stroke
por: Zappasodi, Filippo, et al.
Publicado: (2014) -
Fractal functions, dimensions and signal analysis
por: Banerjee, Santo, et al.
Publicado: (2021) -
Detection of EEG K-Complexes Using Fractal Dimension of Time Frequency Images Technique Coupled With Undirected Graph Features
por: Al-Salman, Wessam, et al.
Publicado: (2019)