Cargando…
Land cover drives large scale productivity-diversity relationships in Irish vascular plants
The impact of productivity on species diversity is often studied at small spatial scales and without taking additional environmental factors into account. Focusing on small spatial scales removes important regional scale effects, such as the role of land cover heterogeneity. Here, we use a regional...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546085/ https://www.ncbi.nlm.nih.gov/pubmed/31183258 http://dx.doi.org/10.7717/peerj.7035 |
Sumario: | The impact of productivity on species diversity is often studied at small spatial scales and without taking additional environmental factors into account. Focusing on small spatial scales removes important regional scale effects, such as the role of land cover heterogeneity. Here, we use a regional spatial scale (10 km square) to establish the relationship between productivity and vascular plant species richness across the island of Ireland that takes into account variation in land cover. We used generalized additive mixed effects models to relate species richness, estimated from biological records, to plant productivity. Productivity was quantified by the satellite-derived enhanced vegetation index. The productivity-diversity relationship was fitted for three land cover types: pasture-dominated, heterogeneous, and non-pasture-dominated landscapes. We find that species richness decreases with increasing productivity, especially at higher productivity levels. This decreasing relationship appears to be driven by pasture-dominated areas. The relationship between species richness and heterogeneity in productivity (both spatial and temporal) varies with land cover. Our results suggest that the impact of pasture on species richness extends beyond field level. The effect of human modified landscapes, therefore, is important to consider when investigating classical ecological relationships, particularly at the wider landscape scale. |
---|