Cargando…
Supervised non-negative matrix factorization methods for MALDI imaging applications
MOTIVATION: Non-negative matrix factorization (NMF) is a common tool for obtaining low-rank approximations of non-negative data matrices and has been widely used in machine learning, e.g. for supporting feature extraction in high-dimensional classification tasks. In its classical form, NMF is an uns...
Autores principales: | Leuschner, Johannes, Schmidt, Maximilian, Fernsel, Pascal, Lachmund, Delf, Boskamp, Tobias, Maass, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546133/ https://www.ncbi.nlm.nih.gov/pubmed/30395171 http://dx.doi.org/10.1093/bioinformatics/bty909 |
Ejemplares similares
-
Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix Factorization
por: Fernsel, Pascal
Publicado: (2021) -
Supervised topological data analysis for MALDI mass spectrometry imaging applications
por: Klaila, Gideon, et al.
Publicado: (2023) -
Multimodal Lung Cancer Subtyping Using Deep Learning Neural Networks on Whole Slide Tissue Images and MALDI MSI
por: Janßen, Charlotte, et al.
Publicado: (2022) -
Conditional Invertible Neural Networks for Medical Imaging
por: Denker, Alexander, et al.
Publicado: (2021) -
Optimization and Comparison of Multiple MALDI Matrix
Application Methods for Small Molecule Mass Spectrometric Imaging
por: Gemperline, Erin, et al.
Publicado: (2014)