Cargando…
Local Riemannian geometry of model manifolds and its implications for practical parameter identifiability
When non-linear models are fitted to experimental data, parameter estimates can be poorly constrained albeit being identifiable in principle. This means that along certain paths in parameter space, the log-likelihood does not exceed a given statistical threshold but remains bounded. This situation,...
Autores principales: | Lill, Daniel, Timmer, Jens, Kaschek, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546239/ https://www.ncbi.nlm.nih.gov/pubmed/31158252 http://dx.doi.org/10.1371/journal.pone.0217837 |
Ejemplares similares
-
Contact manifolds in Riemannian geometry
por: Blair, David Ervin
Publicado: (1976) -
Surface measure on, and the local geometry of, sub-Riemannian manifolds
por: Don, Sebastiano, et al.
Publicado: (2023) -
Riemannian geometry of contact and symplectic manifolds
por: Blair, David E
Publicado: (2002) -
An introduction to differentiable manifolds and Riemannian geometry
por: Boothby, William Munger 1918-
Publicado: (1986) -
An introduction to differentiable manifolds and Riemannian geometry
por: Boothby, William Munger
Publicado: (1986)