Cargando…
Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome
The intestinal microbiome produces various metabolites that may harm or benefit the host. However, the production pathways of these metabolites have not been well characterised. The polyamines putrescine and spermidine required for physiological process are also produced by intestinal microbiome. Th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546329/ https://www.ncbi.nlm.nih.gov/pubmed/30183487 http://dx.doi.org/10.1080/19490976.2018.1494466 |
_version_ | 1783423526291636224 |
---|---|
author | Nakamura, Atsuo Ooga, Takushi Matsumoto, Mitsuharu |
author_facet | Nakamura, Atsuo Ooga, Takushi Matsumoto, Mitsuharu |
author_sort | Nakamura, Atsuo |
collection | PubMed |
description | The intestinal microbiome produces various metabolites that may harm or benefit the host. However, the production pathways of these metabolites have not been well characterised. The polyamines putrescine and spermidine required for physiological process are also produced by intestinal microbiome. The production and release of these polyamines by microbiome are poorly understood, though we have confirmed that intestinal bacteria produced putrescine from arginine. In this study, we characterised polyamine synthesis by analysing the collective metabolic functions of the intestinal microbiome. In particular, we analysed polyamines and their intermediates in faecal cultures, as well as the colonic contents of rats injected with isotope-labelled arginine through a colon catheter, using mass spectrometry. Isotope-labelled putrescine was detected in faecal cultures and colonic contents of rats injected with isotope-labelled arginine. Putrescine is produced through multiple pathways, and its extracellular intermediates are exchanged between bacterial species. Additionally, we demonstrated that the collective metabolic pathway depends on a complex exchange of metabolites released into the colonic lumen. This study demonstrates the existence of putrescine biosynthetic pathways based on the collective metabolic functions of the intestinal microbial community. Our findings provide knowledge to manipulate the levels of intestinal microbial products, including polyamines, that may modulate host health. |
format | Online Article Text |
id | pubmed-6546329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-65463292019-06-14 Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome Nakamura, Atsuo Ooga, Takushi Matsumoto, Mitsuharu Gut Microbes Research Paper/Report The intestinal microbiome produces various metabolites that may harm or benefit the host. However, the production pathways of these metabolites have not been well characterised. The polyamines putrescine and spermidine required for physiological process are also produced by intestinal microbiome. The production and release of these polyamines by microbiome are poorly understood, though we have confirmed that intestinal bacteria produced putrescine from arginine. In this study, we characterised polyamine synthesis by analysing the collective metabolic functions of the intestinal microbiome. In particular, we analysed polyamines and their intermediates in faecal cultures, as well as the colonic contents of rats injected with isotope-labelled arginine through a colon catheter, using mass spectrometry. Isotope-labelled putrescine was detected in faecal cultures and colonic contents of rats injected with isotope-labelled arginine. Putrescine is produced through multiple pathways, and its extracellular intermediates are exchanged between bacterial species. Additionally, we demonstrated that the collective metabolic pathway depends on a complex exchange of metabolites released into the colonic lumen. This study demonstrates the existence of putrescine biosynthetic pathways based on the collective metabolic functions of the intestinal microbial community. Our findings provide knowledge to manipulate the levels of intestinal microbial products, including polyamines, that may modulate host health. Taylor & Francis 2018-09-05 /pmc/articles/PMC6546329/ /pubmed/30183487 http://dx.doi.org/10.1080/19490976.2018.1494466 Text en © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
spellingShingle | Research Paper/Report Nakamura, Atsuo Ooga, Takushi Matsumoto, Mitsuharu Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
title | Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
title_full | Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
title_fullStr | Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
title_full_unstemmed | Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
title_short | Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
title_sort | intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome |
topic | Research Paper/Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546329/ https://www.ncbi.nlm.nih.gov/pubmed/30183487 http://dx.doi.org/10.1080/19490976.2018.1494466 |
work_keys_str_mv | AT nakamuraatsuo intestinalluminalputrescineisproducedbycollectivebiosyntheticpathwaysofthecommensalmicrobiome AT oogatakushi intestinalluminalputrescineisproducedbycollectivebiosyntheticpathwaysofthecommensalmicrobiome AT matsumotomitsuharu intestinalluminalputrescineisproducedbycollectivebiosyntheticpathwaysofthecommensalmicrobiome |