Cargando…
PathoPhenoDB, linking human pathogens to their phenotypes in support of infectious disease research
Understanding the relationship between the pathophysiology of infectious disease, the biology of the causative agent and the development of therapeutic and diagnostic approaches is dependent on the synthesis of a wide range of types of information. Provision of a comprehensive and integrated disease...
Autores principales: | Kafkas, Şenay, Abdelhakim, Marwa, Hashish, Yasmeen, Kulmanov, Maxat, Abdellatif, Marwa, Schofield, Paul N., Hoehndorf, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546783/ https://www.ncbi.nlm.nih.gov/pubmed/31160594 http://dx.doi.org/10.1038/s41597-019-0090-x |
Ejemplares similares
-
DeepPheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier
por: Kulmanov, Maxat, et al.
Publicado: (2020) -
Combining lexical and context features for automatic ontology extension
por: Althubaiti, Sara, et al.
Publicado: (2020) -
Starvar: symptom-based tool for automatic ranking of variants using evidence from literature and genomes
por: Kafkas, Șenay, et al.
Publicado: (2023) -
Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery
por: Richardson, Andrew D., et al.
Publicado: (2018) -
Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset
por: Seyednasrollah, Bijan, et al.
Publicado: (2019)