Cargando…
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
Liquid state machine (LSM), a bio-inspired computing model consisting of the input sparsely connected to a randomly interlinked reservoir (or liquid) of spiking neurons followed by a readout layer, finds utility in a range of applications varying from robot control and sequence generation to action,...
Autores principales: | Wijesinghe, Parami, Srinivasan, Gopalakrishnan, Panda, Priyadarshini, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546930/ https://www.ncbi.nlm.nih.gov/pubmed/31191219 http://dx.doi.org/10.3389/fnins.2019.00504 |
Ejemplares similares
-
SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2018) -
Reinforcement Learning With Low-Complexity Liquid State Machines
por: Ponghiran, Wachirawit, et al.
Publicado: (2019) -
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
por: Sengupta, Abhronil, et al.
Publicado: (2016) -
Correction: Corrigendum: Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
por: Sengupta, Abhronil, et al.
Publicado: (2017) -
Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
por: Wijesinghe, Parami, et al.
Publicado: (2020)