Cargando…
hMRI – A toolbox for quantitative MRI in neuroscience and clinical research
Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use too...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547054/ https://www.ncbi.nlm.nih.gov/pubmed/30677501 http://dx.doi.org/10.1016/j.neuroimage.2019.01.029 |
_version_ | 1783423628461735936 |
---|---|
author | Tabelow, Karsten Balteau, Evelyne Ashburner, John Callaghan, Martina F. Draganski, Bogdan Helms, Gunther Kherif, Ferath Leutritz, Tobias Lutti, Antoine Phillips, Christophe Reimer, Enrico Ruthotto, Lars Seif, Maryam Weiskopf, Nikolaus Ziegler, Gabriel Mohammadi, Siawoosh |
author_facet | Tabelow, Karsten Balteau, Evelyne Ashburner, John Callaghan, Martina F. Draganski, Bogdan Helms, Gunther Kherif, Ferath Leutritz, Tobias Lutti, Antoine Phillips, Christophe Reimer, Enrico Ruthotto, Lars Seif, Maryam Weiskopf, Nikolaus Ziegler, Gabriel Mohammadi, Siawoosh |
author_sort | Tabelow, Karsten |
collection | PubMed |
description | Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates [Formula: see text] and [Formula: see text] , proton density [Formula: see text] and magnetisation transfer [Formula: see text] saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research. |
format | Online Article Text |
id | pubmed-6547054 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-65470542019-07-01 hMRI – A toolbox for quantitative MRI in neuroscience and clinical research Tabelow, Karsten Balteau, Evelyne Ashburner, John Callaghan, Martina F. Draganski, Bogdan Helms, Gunther Kherif, Ferath Leutritz, Tobias Lutti, Antoine Phillips, Christophe Reimer, Enrico Ruthotto, Lars Seif, Maryam Weiskopf, Nikolaus Ziegler, Gabriel Mohammadi, Siawoosh Neuroimage Article Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates [Formula: see text] and [Formula: see text] , proton density [Formula: see text] and magnetisation transfer [Formula: see text] saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research. Academic Press 2019-07-01 /pmc/articles/PMC6547054/ /pubmed/30677501 http://dx.doi.org/10.1016/j.neuroimage.2019.01.029 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tabelow, Karsten Balteau, Evelyne Ashburner, John Callaghan, Martina F. Draganski, Bogdan Helms, Gunther Kherif, Ferath Leutritz, Tobias Lutti, Antoine Phillips, Christophe Reimer, Enrico Ruthotto, Lars Seif, Maryam Weiskopf, Nikolaus Ziegler, Gabriel Mohammadi, Siawoosh hMRI – A toolbox for quantitative MRI in neuroscience and clinical research |
title | hMRI – A toolbox for quantitative MRI in neuroscience and clinical research |
title_full | hMRI – A toolbox for quantitative MRI in neuroscience and clinical research |
title_fullStr | hMRI – A toolbox for quantitative MRI in neuroscience and clinical research |
title_full_unstemmed | hMRI – A toolbox for quantitative MRI in neuroscience and clinical research |
title_short | hMRI – A toolbox for quantitative MRI in neuroscience and clinical research |
title_sort | hmri – a toolbox for quantitative mri in neuroscience and clinical research |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547054/ https://www.ncbi.nlm.nih.gov/pubmed/30677501 http://dx.doi.org/10.1016/j.neuroimage.2019.01.029 |
work_keys_str_mv | AT tabelowkarsten hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT balteauevelyne hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT ashburnerjohn hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT callaghanmartinaf hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT draganskibogdan hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT helmsgunther hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT kherifferath hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT leutritztobias hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT luttiantoine hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT phillipschristophe hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT reimerenrico hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT ruthottolars hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT seifmaryam hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT weiskopfnikolaus hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT zieglergabriel hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch AT mohammadisiawoosh hmriatoolboxforquantitativemriinneuroscienceandclinicalresearch |