Cargando…
A practical guide to methods controlling false discoveries in computational biology
BACKGROUND: In high-throughput studies, hundreds to millions of hypotheses are typically tested. Statistical methods that control the false discovery rate (FDR) have emerged as popular and powerful tools for error rate control. While classic FDR methods use only p values as input, more modern FDR me...
Autores principales: | Korthauer, Keegan, Kimes, Patrick K., Duvallet, Claire, Reyes, Alejandro, Subramanian, Ayshwarya, Teng, Mingxiang, Shukla, Chinmay, Alm, Eric J., Hicks, Stephanie C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547503/ https://www.ncbi.nlm.nih.gov/pubmed/31164141 http://dx.doi.org/10.1186/s13059-019-1716-1 |
Ejemplares similares
-
Biology-inspired data-driven quality control for scientific discovery in single-cell transcriptomics
por: Subramanian, Ayshwarya, et al.
Publicado: (2022) -
4497 Accessible False Discovery Rate Computation
por: Hollister, Megan C, et al.
Publicado: (2020) -
Correcting for batch effects in case-control microbiome studies
por: Gibbons, Sean M., et al.
Publicado: (2018) -
dbOTU3: A new implementation of distribution-based OTU calling
por: Olesen, Scott W., et al.
Publicado: (2017) -
MADGiC: a model-based approach for identifying driver genes in cancer
por: Korthauer, Keegan D., et al.
Publicado: (2015)