Cargando…
Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information
Protein phosphorylation on serine (S) and threonine (T) has emerged as a key device in the control of many biological processes. Recently phosphorylation in microbial organisms has attracted much attention for its critical roles in various cellular processes such as cell growth and cell division. He...
Autores principales: | Hasan, Md. Mehedi, Rashid, Md. Mamunur, Khatun, Mst. Shamima, Kurata, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547684/ https://www.ncbi.nlm.nih.gov/pubmed/31164681 http://dx.doi.org/10.1038/s41598-019-44548-x |
Ejemplares similares
-
iLBE for Computational Identification of Linear B-cell Epitopes by Integrating Sequence and Evolutionary Features
por: Hasan, Md. Mehedi, et al.
Publicado: (2020) -
Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites
por: Rashid, Md. Mamunur, et al.
Publicado: (2020) -
Large-Scale Assessment of Bioinformatics Tools for Lysine Succinylation Sites
por: Hasan, Md. Mehedi, et al.
Publicado: (2019) -
PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features
por: Khatun, Mst. Shamima, et al.
Publicado: (2019) -
NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features
por: Hasan, Md. Mehedi, et al.
Publicado: (2018)