Cargando…

Medial artery calcification increases neointimal hyperplasia after balloon injury

Arterial calcification predicts accelerated restenosis after angioplasty and stenting. We studied the effects of calcification on neointimal hyperplasia after balloon injury in the rat carotid. Arterial calcification was induced by subcutaneous injection of vitamin D(3) or by adventitial application...

Descripción completa

Detalles Bibliográficos
Autores principales: Marshall, Andre P., Luo, Weifeng, Wang, Xue-lin, Lin, Tonghui, Cai, Yujun, Guzman, Raul J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547750/
https://www.ncbi.nlm.nih.gov/pubmed/31160618
http://dx.doi.org/10.1038/s41598-019-44668-4
Descripción
Sumario:Arterial calcification predicts accelerated restenosis after angioplasty and stenting. We studied the effects of calcification on neointimal hyperplasia after balloon injury in the rat carotid. Arterial calcification was induced by subcutaneous injection of vitamin D(3) or by adventitial application of calcium chloride. After balloon catheter injury, neointimal hyperplasia was significantly increased in rats with medial calcification compared with controls. Neointimal cell proliferation in calcified arteries as assessed by proliferating cell nuclear antigen (PCNA) staining was also higher. In calcified arteries, bone morphogenetic protein 2 (BMP-2)levels were increased at the time of injury suggesting a possible explanation for the altered responses. In vascular smooth muscle cells (SMCs) grown under calcifying conditions , stimulation with BMP-2 significantly increased cell proliferation, however, this did not occur in those grown under non-calcifying conditions. These data suggest that neointimal hyperplasia is accelerated in calcified arteries and that this may be due in part to increased BMP-2 expression in medial SMCs. Treatments aimed at inhibiting restenosis in calcified arteries may differ from those that work in uncalcified vessels.