Cargando…

Development of immune checkpoint therapy for cancer

Since the early 20th century, immunologists have investigated mechanisms that protect vertebrates from damaging immune responses against self-antigens by mature lymphocytes, i.e., peripheral tolerance. These mechanisms have been increasingly delineated at the molecular level, ultimately culminating...

Descripción completa

Detalles Bibliográficos
Autores principales: Fritz, Jill M., Lenardo, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547853/
https://www.ncbi.nlm.nih.gov/pubmed/31068379
http://dx.doi.org/10.1084/jem.20182395
Descripción
Sumario:Since the early 20th century, immunologists have investigated mechanisms that protect vertebrates from damaging immune responses against self-antigens by mature lymphocytes, i.e., peripheral tolerance. These mechanisms have been increasingly delineated at the molecular level, ultimately culminating in new therapeutics that have revolutionized clinical oncology. Here, we describe basic science and clinical discoveries that converge mainly on two molecules, CTLA-4 and PD-1, that were recognized with the 2018 Nobel Prize in Physiology or Medicine awarded to James Allison and Tasuku Honjo. We discuss their investigations and those of many others in the field that contravene tolerance through checkpoint inhibition to boost immune killing of malignant cells. We also discuss the mechanisms underlying each therapy, the efficacy achieved, and the complications of therapy. Finally, we hint at research questions for the future that could widen the success of cancer immunotherapy.